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Abstract

We report average tropospheric CH4 volume mixing ratios retrieved from a 27 year time series of high
spectral resolution infrared solar absorption measurements recorded between May 1977 and July 2004 at
the US National Solar Observatory station on Kitt Peak (31.9°N, 111.6°W, 2.09 km altitude) and their
comparison with surface in situ sampling measurements recorded between 1983 and 2004 at the Climate
Monitoring and Diagnostics Laboratory (CMDL) station at Niwot Ridge, Colorado (40.0°N, 105.5°W,
3013 m altitude). The two measurement sets therefore overlap for the 1983-2004 time period. An average
tropospheric volume mixing ratios of 1814 448 ppbv (1 ppbv = 10~ per unit volume) has been derived
from the solar absorption time series with a best-fit increase rate trend equal to 8.26 & 2.20 ppbvyr~! in
1983 decreasing to 1.94 + 3.69 ppbv yr~! in 2003. The CMDL measurements also show a continuous long-
term CH4 volume mixing ratio rise, with subsequent slowing down. A mean ratio of the retrieved average
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tropospheric volume mixing ratio to the CMDL volume mixing ratio for the overlapping time period of
1.038 4+ 0.034 indicates agreement between both data sets within the quantified experimental errors.

© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Long-term monitoring of atmospheric composition and change are key goals of the Network
for the detection of stratospheric change (NDSC) [1,2] (URL: http://www.ndsc.ncep.noaa.gov).
Tropospheric and stratospheric species measurements are recorded from NDSC sites in both the
northern and southern hemisphere with a variety of observational methods, including high
spectral resolution infrared (IR) solar absorption spectroscopy. Methane (CHy) is a key species
for trend monitoring in both the troposphere and stratosphere. It is an important greenhouse gas
with a lifetime of ~10 years. The atmospheric abundance of CH4 has increased by a factor of 2.5
since pre-industrial times [3-5], and it plays a critical role in atmospheric chemistry with a
radiative forcing half that of CO; [6]. It is therefore important to monitor the long-term evolution
of this greenhouse gas within the frame of the Kyoto Protocol. CHy is also an important sink for
tropospheric OH and a major source of tropospheric ozone [7]. Additionally, it impacts
stratospheric ozone both by scavenging Cl radicals [8] and providing a source of water vapor [9].
Major anthropogenic sources of CH, include rice cultivation, livestock, landfills, fossil fuel
production and consumption (natural gas venting, leakage, and coal mining), and biomass
burning. Major natural sources include wetlands and termites with total emissions from all
sources in the range 460-600 Tgyr~! [10].

The goal of this study is to report and discuss a time series of mean tropospheric CH4 volume
mixing ratios (VMRs) derived from the analysis of high spectral resolution IR solar absorption
spectra recorded in southern Arizona from May 1977 to July 2004. We compare this measurement
time series with surface in situ sampling measurements obtained from a station in Colorado with
over 20 years of overlapping sampling coverage.

2. Kitt peak measurements and analysis

The solar absorption spectra were recorded with the custom-made Fourier transform IR
spectrometer (FTIR) at the US National Solar Observatory station on Kitt Peak
(31.9°N, 111.6°W, 2.09 km altitude) [11]. This mountain-top NDSC site is located in the Sonora
desert, a semi-arid region of southwest Arizona, USA. Most CH,4 observations were obtained at
spectral resolutions of 0.01-0.02cm™!, corresponding to maximum optical path differences of
94-50 cm with a weak apodizing function, either with a KCl or CaF, beam splitter.

Retrievals were performed with version 3.90 of the SFIT2 algorithm, which can retrieve vertical
profiles of molecular species from simultancous fits to one or more microwindows. The algorithm
[12] is based on a semi-empirical implementation [13,14] of the optimal estimation method. The
formalism of Rodgers [15] is assumed with Newtonian iteration to account for non-linearities in
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the spectral calculation. First-order terms are used in the SFIT2 approach (terms with the second
derivative of the forward model are ignored) with tests applied for convergence of the solution.
The constraints on the retrieval consist of a priori estimates of the parameters to be retrieved, their
uncertainties, and an assumed signal-to-noise for the selected microwindows. SFIT2 has been
validated through comparison with independently-developed algorithms (see, for example,
Goldman et al. [16] and Hase et al. [17], and the references cited therein). All simulated lines are
assumed to have a Voigt line shape [18]. A new solar lines model is now included in the simulation
and retrieval codes, based on the work of Hase et al. [19].

Adopted daily temperature profiles were obtained from National Centers for Environ-
mental Prediction (NCEP) measurements for the location of Kitt Peak. Refractive ray-tracing
and airmass-weighted pressures and temperatures in 37 atmospheric layers extending from
the site altitude (2.09 km) to 100 km were performed based on the NCEP data (smoothly correc-
ted to the 1976 US Standard Atmosphere temperature profile above 0.4hPA (~55km))
with the algorithm described by Meier et al. [20]. The vertical thickness of the layers increases
smoothly with altitude from less than 1 km in the lowest layer to 2km at 30 km with even wider
layers above.

We adopted a reference set of a priori VMR versus altitude profiles for CH4 and other infrared
absorbing molecules. The a priori profile adopted for CH4 assumes a constant VMR of 1800 ppbv
(1 ppbv = 10~ per unit volume) below 10km decreasing to 847 ppbv at 30km and 165 ppbv at
50 km, with further decreases above. It is based on balloon profile measurements obtained with a
high spectral resolution FTIR [20,21]. Weak HDO absorption occurs in the window regions
selected for the analysis. We adopted the H,O a priori profile from the 1976 US Standard
Atmosphere [22] as the a priori profile for HDO in the analysis.

Spectral parameters were taken primarily from the 2004 HITRAN compilation [23] (available
from http://cfa-www.harvard.edu/hitran/). Three microwindows extending from 2650.85 to
2651.25, 2666.95 to 2667.35, and 2673.90 to 2674.21 cm~! were fitted simultaneously to retrieve
the CH4 vertical profile from spectra recorded at solar astronomical zenith angles of 85° or less.
Molecule-by-molecule simulations of the main absorbers for two of the three microwindows are
presented in Fig. 1, together with a typical measured spectrum (labeled KP). A more complete
simulation shows also some weak solar lines and weak Oz and CO, lines, which do not affect the
retrieval process. A signal-to-noise ratio of 250 was selected semi-empirically and the a priori
covariance matrix was assumed to be diagonal with a relative uncertainty of 0.2 in each of the 37
forward model layers. The weak absorption by HDO was fitted by retrieving a multiplicative
scaling factor for the a priori profile.

Fig. 2 illustrates VMR averaging kernels (for a discussion of the concept of averaging kernel,
see, for example, Refs. [15,25]) calculated for merged layers at altitudes of 2.09-10, 10-14, and
14-50km. In order to avoid the influence of stratospheric air masses on our results, a 10km
altitude limit was selected as the upper boundary for the tropospheric region; daily-average
tropopause altitudes calculated from a 2.5° x 2.5° NCEP analysis (for 2000 and 2001 interpolated
to the location of Kitt Peak) indeed indicate that the tropopause height varies between 7.6 and
17.5km, but less than 2% of the occurrences were below 10 km [24]. The VMR averaging kernel
for the tropospheric region of interest here is broad, increasing from a minimum of 0.53 in the
lowest layer to a maximum of 0.85 near 5.92 km, decreasing above. Calculations were performed
with SFIT2 for a typical retrieval to estimate the number of degrees of freedom of signal, i.e. the
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Fig. 1. Simulation of the absorption by the most important molecules in two of the three intervals analyzed in this
study and the corresponding measured Kitt Peak solar spectrum, offset vertically for clarity (weak solar and
atmospheric lines not shown in the simulations). The astronomical zenith angle and date of the measured spectrum are
identified.
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Fig. 2. Volume mixing ratio averaging kernels versus altitude for CHy4 for merged layers covering altitudes of 2.09-10,
10-14, and 14-50 km.

number of independent pieces of information, and a value of 2 was obtained. This is consistent
with the broad averaging kernels shown in Fig. 2.

Fig. 3 illustrates a sample measurement and fit from the Kitt Peak time series. Residuals are
shown on an expanded vertical scale. As in previous studies [12], objective criteria were used to
eliminate measurements of weak absorption or high noise from the time series. After selection, the
Kitt Peak time series contains a total of 566 measurements on 195 days and is one of the longest
near continuous CH4 NDSC measurements set reported to date.

Table 1 lists the most important random and systematic sources of error and gives estimates of
their contribution to the error budget, for a typical spectrum. These values have been estimated as
described previously [12]. Random error is reduced by considering merged tropospheric layers
below 10 km, and by further calculating daily averages. Systematic error is the dominant source of
uncertainty with a total relative error of 13% calculated from the root mean sum squares of the
individual components. The largest error source is the a priori relative contribution to the
retrieval.

Niwot Ridge (NWR) in situ VMR measurements were obtained weekly with gas
chromatography, and analyzed with a flame ionization detector [26,27]. Precision of the NWR
measurements is ~1 ppbv. The time series extended from June 1983 to December 2003.

Daily average tropospheric VMRs (2.09-10km) derived from the Kitt Peak time series are
displayed in Fig. 4 (plus symbols) and compared with the NWR surface in situ monthly average
VMRs obtained between April 1993 and December 2003 (diamond symbols). The Kitt Peak time
series was fitted with the expression

Ca = ap + ai(t — to) + ax(t — 19)* + a2 cos2n(t — to — ¢)), (1)
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Fig. 3. Sample spectral fits from the Kitt Peak time series for the three intervals analyzed in this study. Residuals
(measured minus calculated signals) are shown above each on an expanded vertical scale.

where Cpa is the daily average tropospheric VMR at time ¢, ag, @1, and a, are coefficients for
modeling the trend of the tropospheric VMR, a3 is the amplitude of the seasonal cycle, and ¢ is
the phase corresponding to the seasonal maximum. The same expression was used to fit the NWR
data set. Resulting best fits to the full 27 year KP and 20 year NWR time series are, respectively,
reproduced as dashed and solid curves. Both show a continuous long-term CH,4 increase with a
slowdown in the accumulation rate in recent years. For Kitt Peak, we calculate a trend that
corresponds to an increase of 8.255+2.197ppbvyr~!, one sigma, in 1983 declining to
1.945 4+ 3.695 ppbvyr~! in 2003, not significant at the one sigma level. The seasonal cycle was
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Table 1
Random (R) and systematic (S) error sources and their estimated relative uncertainties for retrievals of CHy 2.09-10 km
daily mean mixing ratios

Source of error Type Relative error (%)
Finite signal-to-noise R 2
Zenith angle uncertainty R 2
Channeling in spectrum S <1
Interferences S 1
Forward model approximations S 2
A priori relative contribution S 13
CHy spectroscopic parameters S 2
Zero-level offsets S <1
Retrieval algorithm S 3
Total random error
Total systematic error 14
See Ref. [12, Section 6] for the method used and parameters considered for the error analysis.
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Fig. 4. Measured daily average 2.09-10 km mean volume mixing ratios versus time for Kitt Peak CH4 (plus symbols)
and monthly mean Niwot Ridge VMRs (diamond symbols) with fits to both assuming Eq. (1).

found not to be statistically significant in either sets and is not displayed. It is important to
recognize the limited sampling of the Kitt Peak measurement time series. Prior to 1983, there are
only 10 daily means, and the uncertainty in the CHy increase rate is likely to be larger than
indicated by the formal uncertainty in our trend.

The Kitt Peak and CMDL measurements in general do not occur on the same days, nor is the
frequency of the sampling the same. The mean ratio of Kitt Peak/CMDL VMRs has been
calculated based on the fits to the time series for the coincident time period. The ratio of the
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average Kitt Peak 2.09-10 km mixing ratio to the CMDL surface VMR the overlapping time
period is 1.038 £ 0.034. The relative difference in the mixing ratios is within the systematic error
estimated for the Kitt Peak daily average measurements (Table 1) and suggests the error is
overestimated.

3. Summary and conclusions

The Kitt Peak CH4 time series can be compared with previously reported measure-
ments. Washenfelder et al. [28] analyzed a time series of near infrared measurements of CHy
recorded between 1977 and 1995 from the same station at 0.02cm~' resolution. Column-
averaged measurements between 1977 and 1995 show a seasonal peak-to-peak seasonal cycle
with an amplitude of 30ppbv and were fitted to estimate an average increase rate of
18.0 + 0.8 ppbvyr~! over the time span, consistent with the trend of 18 & 2 ppbv for the same
time period [29,30].

A continuous rise in the CH4 tropospheric mixing ratio is observed both above Kitt Peak over
the past 27 years and at the surface from a northern hemisphere CMDL stations with overlap over
1983-2003. The Kitt Peak time series covers May 1977 to July 2004 with a best-fit increase rate of
8.255+2.197ppbvyr~!, one sigma in 1983 declining to 1.945 4+ 3.695ppbv in 2003 for the
2.09-10km mean VMR. The ratio of the Kitt Peak to the CMDL mixing ratios for the
overlapping October 1987 to December 2003 time period equals (1.038 4 0.034), indicating the
CMDL measurements are consistent with those from Kitt Peak within the error estimated for the
ground-based remote sensing results (Table 1). This consistency is encouraging and suggests the
infrared spectral parameters [23] and the SFIT2 algorithm [12] are valid within the estimated
errors assuming the northern hemisphere CMDL results are also valid, there is no significant
offsets due to the difference in station location. The solar absorption and surface measurement
results indicate a significant slowdown in the CH4 accumulation rate at northern mid-latitudes
over the continental US. Our observation is consistent with ground-based solar absorption
measurements, obtained from the Jungfraujoch for the 1951-2000 time period [5]. There is a
continued need to monitor CHy4 levels both with the Kitt Peak FTIR and at NWR as they provide
databases useful for understanding mid-latitudinal continental sources of CH4 over the US, their
variability, and changes as a function of time.
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