

Line Profile Analysis by the Whole Powder Pattern Fitting

Workshop W12 Denver X-Ray Diffraction Conference

Colorado Springs August 2, 2005

Outline of the Workshop

Davor Balzar

- Basics about diffraction-line broadening
- Modeling of line broadening in Rietveld refinement programs How to do it? - Recipes
- Size-Strain Round Robin

• Jens Müller

Programs SHADOW, SLH, and BREADTH

• Matteo Leoni

 Whole Powder Pattern Modeling (WPPM) Theoretical Overview Program PM2K Examples

• Iuliana Dragomir-Cernatescu

 Multiple Whole Profile (MWP) or Convolution Multiple Whole Profile (CMWP) programs

Theoretical Overview Examples

Origins of Line Broadening

Deformation:

STRAIN: Dislocations, vacancies, interstitials, substitutions,...

$$\beta_{\rm D}(2\theta) = 4 e \tan\theta$$

$$\beta_{\rm S}(2\theta) = \frac{K\lambda}{\langle D \rangle_{v} \cos\theta}$$

NIVERSITY OF

How to Extract This Information?

• Both instrument and specimen broaden the diffraction lines, and the observed line profile is a convolution (Bragg peaks only):

 $h(x) = [g \star f](x) + \text{background}.$

 $g(x) = (\omega \star \gamma)(x).$

 $f(x) = (S \star D)(x).$

• Task: Extract *f* from *h* by **knowing** *g*:

- Deconvolution (Stokes):
- Convolution (profile fitting):

preset line-profile function

F(n)=H(n)/G(n)

Instrumental Broadening

- Determining instrumental intrinsic broadening:
 - "Fundamental parameters" approach
 - Measure a suitable material

("Standard") NIST SRM 660a LaB₆

Generally complicated, but...!

A measurement at only *one* angle suffices to estimate the instrumental contribution! – lab x-rays only!

Voigt-Function Fits to the LaB₆ Line Profiles

Physical Broadening

g known => instrumental-broadening unfolding
f contains physical information => correct!

Simple Analytical Functions

• Gauss:
$$I(x) = I(0) \exp \left[-\pi \frac{x^2}{\beta_G^2}\right]$$

• Lorentz (Cauchy):
$$I(x) = I(0) \frac{1}{\beta_{\rm C}^2 / \pi^2 + x^2}$$

• Voigt (G
$$\bigstar$$
 L): $I(x) = I(0) \left(\frac{\beta}{\beta_{\rm C}}\right) \operatorname{Re}\left[\operatorname{erfi}\left(\frac{\pi^{1/2}x}{\beta_{\rm G}} + ik\right)\right] ; k = \frac{\beta_{\rm C}}{\pi^{1/2}\beta_{\rm G}}$

Experiment

- Ball-milled W (dislocations)
- MgO (thermal decomposition of MgCO₃)

Isotropic size broadening

Data analysis

Stokes method (optimal conditions):
non-overlapped lines (220, 400, 422)
MgO annealed as a standard
FWHM_{sp} /FWHM_{st} = 4

W Line Profiles (110)

Cu K $\alpha_{1,2}$

NSLS

Physical Broadening Modeled by a Voigt Function

• Other experimental evidence

- Pressed Ni-powder (least-squares deconvolved) (Suortti et al., 1979)
- Chlorite (Ergun's iterative unfolding) (Reynolds, 1989)

• Theoretical evidence:

- Krivoglaz-Wilkens theory (Levine & Thomson, 1997, Wu et al., 1999)
- Warren-Averbach analysis (Balzar & Ledbetter, 1993)
- $G \not\approx L = V; V \not\approx V \dots V = V (!):$

Both S & D profiles ("double-Voigt" model) (Langford, 1980; Balzar, 1992)

$$\beta_{\rm L} = \sum_{i} (\beta_{\rm L})_{i}$$
$$\beta_{\rm G}^{2} = \sum_{i} (\beta_{\rm G}^{2})_{i}$$

Size-Strain Modeling in Rietveld Refinement

• Size broadening (Scherrer, 1918):

$$\beta_{\rm S}(2\theta) = \frac{K\lambda}{\langle D \rangle_{v} \cos\theta}$$

• Strain broadening (Stokes & Wilson, 1944):

$$\beta_{\rm D}(2\theta) = 4 e \tan\theta$$

• Modified TCH pVoigt (Thompson, Cox & Hastings, 1987):

$$\Gamma_{\rm L} = X/\cos\theta + Y\tan\theta + Z$$

$$\Gamma_{\rm G}^2 = P/\cos^2\theta + U\tan^2\theta + V\tan\theta + W$$

Physical Significance of the Parameters

$$\Gamma_{\rm L} = X/\cos\theta + Y\tan\theta + Z$$

$$\Gamma_{\rm G}^2 = P/\cos^2\theta + U\tan^2\theta + V\tan\theta + W$$

•*X*,*P* => size parameters

• $Y, U \Rightarrow$ strain parameters

Recombine into Voigt !

- *V*, *W*, *Z* => instrumental contribution !?
 - > *Y*, *W* sufficient for approximate results with laboratory data
 - ▶ More parameters with synchrotron and neutron data (Y, W, V, U)

$$\beta_{\rm L} = \sum_i (\beta_{\rm L})_i$$

Triple-Voigt model

$$\beta_{\rm G}^2 = \sum_i (\beta_{\rm G}^2)_i$$

Voigt Function in Rietveld Refinement

• Modified TCH model:

$$\Gamma_{\rm L} = X/\cos\theta + Y\tan\theta + Z \qquad \qquad \Gamma_{\rm L} = \gamma_1 d + \gamma_2 d^2 + \gamma_0$$

$$\Gamma_{\rm G}^2 = P/\cos^2\theta + U\tan^2\theta + V\tan\theta + W \qquad \qquad \Gamma_{\rm G}^2 = \sigma_1^2 d^2 + \sigma_2^2 d^4 + \sigma_0^2$$

$$\frac{CW}{TOF}$$

• Correct for the instrumental broadening:

$$(X, P, U, Y)_{\text{PHYSICAL}} = (X, P, U, Y)_{\text{SAMLE}} - (X, P, U, Y)_{\text{STANDARD}}$$

• Size and strain:

Voigt Function in Rietveld Refinement

• FWHM => Integral breadth

Voigt function

 $\beta = \frac{\Gamma}{2} \left[\frac{\eta}{\pi} + (1 - \eta) \left(\frac{\ln 2}{\pi} \right)^{\frac{1}{2}} \right]^{-1}$

$$\frac{\beta_{\rm L}}{\Gamma_{\rm L}} = \frac{\pi}{2} \qquad \qquad \frac{\beta_{\rm G}}{\Gamma_{\rm G}} = \frac{1}{2} \sqrt{\frac{\pi}{\ln 2}} \qquad \frac{\beta_{\rm G}}{\Gamma_{\rm G}} = \sqrt{2\pi} \quad (\text{GSAS}) \qquad \qquad \beta = \beta_{\rm G} \frac{\exp(-k^2)}{1 - \exp(k)} \qquad \qquad k = \frac{\beta_{\rm L}}{\sqrt{\pi} \beta_{\rm G}}$$

Pseudo-Voigt function (TCH)

$$\eta = 1.36603 \left(\frac{\Gamma_{\rm L}}{\Gamma}\right) - 0.47719 \left(\frac{\Gamma_{\rm L}}{\Gamma}\right)^2 + 0.11116 \left(\frac{\Gamma_{\rm L}}{\Gamma}\right)^3$$
$$\Gamma = \left(\Gamma_{\rm G}^{\ 5} + 2.69269\Gamma_{\rm G}^{\ 4}\Gamma_{\rm L} + 2.42843\Gamma_{\rm G}^{\ 3}\Gamma_{\rm L}^{\ 2} + 4.47163\Gamma_{\rm G}^{\ 2}\Gamma_{\rm L}^{\ 3} + 0.07842\Gamma_{\rm G}\Gamma_{\rm L}^{\ 4} + \Gamma_{\rm L}^{\ 5}\right)^{\frac{1}{5}}$$

001

Crystallite-size Distribution Determination

• Important for many materials:

- Biomedical applications
 Polymer-based nanocomposites
 Drug encapsulation
- Gas sensors

• Characterization of the size-related line broadening

- Sample with characterized defects
- Methods
 - Physically based ("bottom-top")
 - -Dislocations
 - -Size distributions
 - Phenomenological ("top-bottom")

Different definition of the parameters => comparison difficult !!!

Empirical approach => Round Robin

Published Results

• The results of the round robin and comparative analysis using three different line-broadening methods were published:

 D. Balzar, N. Audebrand, M. Daymond, A. Fitch, A. Hewat, J.I. Langford, A. Le Bail, D. Louër, O. Masson, C.N. McCowan, N.C. Popa, P.W. Stephens, B. Toby, Size-Strain Line-Broadening Analysis of the Ceria Round-Robin Sample, *Journal of Applied Crystallography* 37 (2004) 911-924

• The reprint and original measurements are available at the Web site www.du.edu/~balzar

Size-Strain Round Robin Co-Authors

- N. Audebrand and D. Louër, University of Rennes
- M. R. Daymond, ISIS, Rutherford-Appleton Laboratory, Didcot
- A. Fitch and O. Masson, ESRF, Grenoble
- A. Hewat, ILL, Grenoble, France
- J. I. Langford, University of Birmingham
- A. Le Bail, University of Maine, Le Mans
- C. N. McCowan, NIST, Boulder, Colorado
- N. C. Popa, National Institute for Materials Physics, Bucharest
- P. W. Stephens, NSLS, Brookhaven National Laboratory, Upton
- B. Toby, NCNR, NIST, Gaithersburg, Maryland

Round-robin participants and CPD gratefully acknowledged

Round-Robin Sample

- Choice
 - Chemically stable, easy control of stoichiometry, size, and strain
 - Line overlap => simple crystal structure
 - Anisotropic line broadening modeling => spherical crystallites
 - Size-strain separation => predominantly size broadened
 - Broad size distribution => controlled synthesis

- Sample with broadened lines (University of Rennes)
 - Thermal treatment of hydrated ceria
 - Annealing at 650 °C for 45 h
- Instrumental standard (NIST Boulder)
 - Annealing at 1300 °C for 3 h

001

Comparison with the New LaB₆ NIST SRM660a

"Representative" Measurements

• Laboratory x-ray sources:

• "Common" instrumental setup: University of Le Mans (Armel Le Bail)

Incident-beam monochromator: University of Birmingham (J. Ian Langford)

• Synchrotron sources:

2nd generation, B-B geometry (flat plate): NSLS, Brookhaven National Laboratory (Peter W. Stephens)

• 3rd generation, D-S geometry (capillary) : ESRF, Grenoble (Olivier Masson and Andy Fitch)

• Neutron sources:

CW:

High resolution: BT-1, NCNR, NIST, Gaithersburg (Brian Toby)

Low resolution: D1A, ILL, Grenoble (Alan Hewat)

TOF:

High-resolution: HRPD, ISIS, Oxford (Mark Daymond)

Instrument Resolution

• Instrument resolution and precision of the size-strain determination

Sample Characterization

Morphology

Analysis of Results

- Line-broadening methods:
 - Physical model:

Lognormal size distribution of spherical crystallites

Phenomenological approach:

Bayesian deconvolution + Warren-Averbach analysis

- Rietveld refinement:
 - Important, used

No clear understanding of microstructural parameters that can be extracted

Comparison of Results

Lognormal size distribution

	\overline{R} (Å)	С	D_A (Å)	D_V (Å)
Birmingham	89.0(10)	0.187(5)	167(3)	223(5)
Le Mans	90.9(3)	0.188(2)	171(1)	229(2)
ESRF	90.0(10)	0.192(6)	171(4)	229(6)
NSLS	93.3(7)	0.177(3)	172(2)	228(4)
ILL	93.0(20)	0.173(7)	171(6)	225(9)
NIST	93.0(40)	0.184(15)	174(12)	232(19)
ISIS	91.0(10)	0.191(4)	172(3)	231(5)

Warren-Averbach analysis

	D_{\star} (Å)	D_{ν} (Å)	RMSS	RMSS = 0	
	A	V X V	(10 ⁻⁴)	$D_{_{A}}$ (Å)	D_V (Å)
Birmingham	177	238	4.4	159	228
Le Mans	198	241	6.6	181	226
ESRF	195	213	0^{1}	187	224
NSLS	196	234	4.1	189	229
ILL	188	228	4.5	176	224
NIST	194	251	7.1	167	230
ISIS	165	248	5.0	177	240

Rietveld refinement

	$D_{\rm p}$ (Å)	β_c/β_1	е	$e = 0^1$
	ĸ	, 0,, <u>r</u>	(10 ⁻⁴)	D_R (Å)
Birmingham	227(3)	0.85(2)	0	227(3)
Le Mans	235(2)	1.01(1)	2.2(1)	224(1)
ESRF	223(1)	0.704(7)	1.5(1)	219(1)
NSLS	236(2)	0.84(1)	2.3(1)	224(1)
ILL	221(3)	0.83(2)	0.1(3)	220(2)
NIST	231(6)	0.74(4)	4.5(8)	216(4)
ISIS	232(1)	0.831(8)	5.5(2)	224(1)

Round Robin

- •49 participants
- 16 result sets returned
- Methods employed:
 - Simplified integral breadth
 - Double-Voigt integral breadth
 - Rietveld refinement
 - Warren-Averbach analysis
 - Lognormal size distribution + Gaussian strain broadening
 - "Fundamental-parameters" approach

▶ ...

Round Robin Results

RR Conclusions

- Instrument resolution not so important (at this level of broadening)
- Analysis methods introduce more uncertainty than the instrument
- Size-strain separation a problem
- Size-broadened profile has a significant Gauss contribution
- Rietveld refinement
 - Potential correlation of size-strain parameters with others
 - Non-Voigtian profiles problematic

Programs SHADOW and BREADTH

- Old-fashioned line–broadening analysis
- "Double-Voigt" approach
 - Both size-broadened and strain-broadened profiles are assumed to be Voigt functions
- SHADOW (Scott Howard & Bob Snyder) used to fit both instrumental broadening (LaB₆) and broadened patterns
- BREADTH used to analyze results obtained by SHADOW and yields:
 - Both area-weighted and volume-weighted domain sizes => determines a crystallite-size distribution
 - > Strain as a function of averaging distance in crystallites
- Procedure simplified and new auxiliary programs added by Jens Müller
 - SLH (SHADOW's Little Helper)
- Details at:
 - www.du.edu/~balzar

Anisotropic Line Broadening in Rietveld Refinement

Thermal-parameters-like ellipsoids (size + strain) (Le Bail, 1985)
 Cubic symmetry => SPHERES

• Platelets (Greaves, 1985; Larson & Von Dreele, 1987)

$$\Gamma_{\rm L} = (X + X_e \cos \phi) / \cos \theta + (Y + Y_e \cos \phi) \tan \theta; \qquad \phi = \triangleleft (\mathrm{H}_{\rm hkl}, \mathrm{A}_{\rm p})$$

• Elastic-dependent anisotropic strain, Thompson, Reilly, and Hastings, 1987 (hexagonal)

$$\Gamma_{\rm G} = \left[A + \frac{Bl^4 + C(h^2k^2 + k^2l^2) + Dh^2k^2}{(h^2 + k^2 + l^2)^2}\right]^{1/2} \tan\theta$$

Anisotropic Line Broadening in Rietveld Refinement

• Stephens, 1999 (all Laue classes)

$$\Gamma_{A} = \left[\sum_{HKL} A_{HKL} h^{H} k^{K} l^{L}\right]^{1/2} d \tan \theta$$

15 A_{HKL} (triclinic); 2 A_{HKL} (cubic)

Voigt strain-broadened profile

$$\Gamma_{\rm L} = X / \cos \theta + Y \tan \theta + \zeta \Gamma_A(hkl)$$

$$\Gamma_{\rm G}^{2} = P / \cos^2 \theta + U \tan^2 \theta + (1 - \zeta)^2 \Gamma_A^{2}(hkl)$$

Anisotropic Line Broadening in Rietveld Refinement

• Popa, 1998: Elastic-dependent anisotropic strain and size

- Strain model effectively identical to Stephen's approach for all Laue classes
- Size model: expansion in a series of spherical harmonics

$$< D > = D_0 + \sum_{l,m} D_l P_l^m (\cos \phi) e^{im\phi}$$
 ITERATION

Gauss strain + Lorentz size broadened profile

