Whole Powdern Pattern Modelling (analysis of nanocrystalline materials)

Matteo Leoni, Paolo Scardi

Department of Materials Engineering and Industrial Technologies, University of Trento Matteo.Leoni@unitn.it

WPPM : basics

In traditional methods of analysis we loose the direct contact with the experimental data

This has been the main driving force towards the introduction of Whole Powder Pattern Modelling, aimed at directly extract the information from the experimental pattern

54° Denver X-ray conference Colorado Springs - 2005 - Matteo Leoni

Whole Powder Pattern Modelling: WPPM

WPPM is based on a direct modelling of the experimental pattern, based on physical models of the microstructure and lattice defects:

Pattern built as sum of broadened peaks plus a background

Each peak is synthesised in reciprocal space from its Fourier transform and then remapped into 2θ space through the use of a suitable interpolation algorithm

 T^{IP}

pV

 $\{hkl\}$

Instrumental Profile

WPPM: basics

$$I_{\{hkl\}}\left(d^{*}, d_{\{hkl\}}^{*}\right) = k\left(d^{*}\right) \cdot \sum_{hkl} w_{hkl} \int_{-\infty}^{\infty} \mathbb{C}_{hkl}(L) \exp\left(2\pi i L \cdot s_{hkl}\right) dL$$

Diffraction profiles result
from a convolution of effects.
$$\cdot A_{\{hkl\}}^{S} \cdot A_{\{hkl\}}^{D} \cdot (A_{hkl}^{F} + iB_{hkl}^{F}) \cdot A_{\{hkl\}}^{APB} \cdot (A_{hkl}^{GSR} + iB_{hkl}^{GSR}) \cdot (A_{hkl}^{CF} + iB_{hkl}^{CF}) \cdot$$

Domain size Dislocations

Faulting

Instrumental Profile, Domain Size, Dislocations, Anti-Phase Domain terms are real functions of L (Fourier length), whereas Faulting, Grain Surface Relaxation and fluctuations in the composition give complex (A+iB) contributions

APB

Additional line broadening sources can be included by adding (multiplying) corresponding FTs

Grain surface relaxation

54° Denver X-ray conference Colorado Springs - 2005 - Matteo Leoni $B_{_{hkl}}^{CF}$

Stoichiometry fluctuations

WPPM: instrumental profile

The following curves, e.g. can be obtained by plotting the half width at half maximum and the gaussian content of the pseudo-Voigt profile for the fit of the LaB_6 SRM 660A standard peaks measured on a Rigaku diffractometer:

WPPM: instrumental profile

When a pseudo-Voigt curve is used for the modelling, the following expression can be used for the corresponding Fourier cosine coefficients:

$$T_{pV}^{IP}(L) = (1-k) \cdot \exp\left(-\pi^2 \cdot \sigma_s^2 L^2 / \ln 2\right) + k \exp\left(-2\pi \cdot \sigma_s L\right)$$

Sine coefficients are zero if the curve is considered as symmetric. Width (σ_s) and shape (related to k) parameters for the given reflection (e.g. given Bragg angle) are determined from the parametric description of the instrumental profile.

In a nanocrystalline material, the most important broadening source is perhaps the small size of coherently diffracting domains

Expressions for $A_c(L,D)$ can be calculated for different crystal shapes by means of the 'ghost' concept of Wilson:

12

Fourier Coefficients: $A_i(L) = [M_{i,3}]^{-1} \int_{LK}^{\infty} A_c(L,D) D^3 g_i(D) dD$

$$A_{l}(L) = \sum_{n=0}^{3} Erfc \left[\frac{\ln(L \cdot K^{c}) - \mu - (3 - n)\sigma^{2}}{\sigma\sqrt{2}} \right] \frac{M_{l,3-n}}{2M_{l,3}} \cdot H_{n}^{c} L^{n}$$

$$A_{p}(L) = \sum_{n=0}^{3} \left(\frac{\sigma}{\mu}\right)^{n} \frac{\Gamma\left(\sigma + (3-n), \frac{K^{c}L\sigma}{\mu}\right)}{\Gamma(\sigma+3)} \cdot H_{n}^{c}L^{n}$$

YORK

LOGNORMAL

$$A_{Y}(L) = \sum_{n=0}^{3} \left(\frac{\sigma}{\mu}\right)^{n} \frac{\Gamma\left(\sigma + (4-n), \frac{K^{c}L\sigma}{\mu}\right)}{\Gamma(\sigma+4)} \cdot H_{n}^{c}L^{n}$$

Dislocations are quite often the main kind of lattice defect present in a nanocrystalline material

WPPM: dislocation contrast

Line broadening due to dislocation is markedly anisotropic (it introduces specific *hkl* dependence)

54° Denver X-ray conference Colorado Springs - 2005 - Matteo Leoni

WPPM: dislocation contrast

WPPM: dislocation contrast

The Fourier coefficients relative to dislocations (average density ρ , effective outer cut-off radius R_e , Burgers vector b and average contrasts factor \overline{C}_{hkl}) read:

$$A_{\{hkl\}}^{D}(L) = \exp\left[-\frac{1}{2}\pi |b|^{2} \overline{C}_{hkl} \rho d_{\{hkl\}}^{*^{2}} \cdot L^{2} f^{*}(L/R_{e})\right]$$

where $f^*(L/R_e)$ is Wilkens' function.

54° Denver X-ray conference Colorado Springs - 2005 - Matteo Leoni

WPPM: antiphase boundaries

For the presence of anti-phase domain boundaries (where the probability of finding a fault along the chosen direction is γ):

$$A_{\{hkl\}}^{APB}(L) = \exp\left[-\frac{-2\gamma(|h|+|k|)\cdot L}{d_{hkl}(h^{2}+k^{2}+l^{2})}\right]$$

Only superstructure peak profiles are affected

Line broadening due to faulting is markedly anisotropic (it introduces specific *hkl* dependence)

hkl dependence is different than that seen for dislocations

54° Denver X-ray conference Colorado Springs - 2005 - Matteo Leoni

For twin and deformation faults in fcc (probability β and α , respectively):

$$A_{hkl}^{F}(L) = \left(1 - 3\alpha - 2\beta + 3\alpha^{2}\right)^{\left|\frac{1}{2}Ld_{\{hkl\}}^{*}\cdot\frac{L_{o}}{h_{o}^{2}}\sigma_{L_{o}}\right|}$$

$$B_{hkl}^{F}(L) = -\sigma_{L_{o}} \cdot \frac{L}{|L|} \cdot \frac{L_{o}}{|L_{o}|} \cdot \beta / (3 - 6\beta - 12\alpha - \beta^{2} + 12\alpha^{2})^{1/2}$$

The modelling is highly simplified (rough description of the phenomena), but it can be seen that the profile is not symmetrical (a sine term is present).

Each member of the {hkl} family can possibly be broadened, asymmetric and shifted from its Bragg position:

WPPM simulation: effect of faulting

(111) faulting in *fcc* metal structures α =2%, β =5%, <D>=59 nm, ρ =10¹³ m⁻²

WPPM: fingerprint of the effects

$$I_{\{hkl\}}\left(d^*, d_{\{hkl\}}^*\right) = k\left(d^*\right) \cdot \sum_{hkl} w_{hkl} \int_{-\infty}^{\infty} \mathbb{C}_{hkl}(L) \exp\left(2\pi i L \cdot s_{hkl}\right) dL$$
$$\frac{T_{PV}^{IP} A_{\{hkl\}}^S A_{\{hkl\}}^{APB} \left(A_{hkl}^F + i B_{hkl}^F\right) A_{\{hkl\}}^D}{\left(A_{hkl}^F + i B_{hkl}^F\right) A_{\{hkl\}}^D}$$

WPPM : software

PM2K is a general problem-independent fit program.

- based on a multiple client/server architecture
- server implements a problem-independent multi-purpose fit routine, driven through a TCP-IP interface
- > plugins are used to extend the functionality of the routine:
 - the WPPM algorithm is built as plug-in for the server
 - broadening models used in WPPM are designed as plugins
 - input/output file type managers are plugins
 - a plugin development kit allows an easy implementation of new models
 - the program uses a versatile input file format

Possible broadening plugins for WPPM (most of them already implemented):

- > Instrumental broadening
 - Caglioti pV
 - FPA

> Size broadening

- HISTOGRAM MODEL
 - (sphere, cube, tetrahedron, octahedron, ellipsoid, hexagonal prism, cylinder, harmonics)
- ANALYTICAL MODEL
 - delta, lognormal, gamma, generalised gamma, York distributions (sphere, cube, tetrahedron, octahedron, ellipsoid, hexagonal prism, cylinder, harmonics)
- Column Length Distribution (a la Bertaut)

> Strain broadening

- dislocations (all symmetries) (simplified Wilkens, full Wilkens models)
- dislocations (all symmetries) (harmonics invariant, Green function model)
- dislocation configurations (arrays, pile-ups, walls)
- van Berkum model
- Houska-like (Houska, Adler-Houska, modified Houska)

> Effective models (size/strain mix)

• Stephens/Popa

> Faulting

- recursion equations (Warren) for fcc, bcc and hcp
- correlation probability
- correlation matrices
- recursive approach (convergence towards DIFFaX⁺)

Antiphase Boundaries

- Wilson-Zsoldos finite differences
- Wilson-Zsoldos differential equations

> Grain Surface Relaxation

- original model (size-independent relaxation-zone width)
- modified model (size-dependent relaxation)

> Additional broadening models

- full micromechanical model
- grain-dependent lattice parameter
- stoichiometry fluctuation

A **plugin development kit** is available (example written in C++) for those willing to implement their models into PM2K. Just throw the plugin in plugins directory and the new function will be automatically available to PM2K.

<pre>New Open SaveAs Copy Connect Network Connect Stop UpdatePlot GetInt files Get Result // Cerium oxide, test // instrumental parameters (Caglioti) par 'W 1.790000E-02, 'W 9.20000E-03 // par 'W 1.790000E-02, 'W 9.20000E-03 // par 'W 1.790000E-01, 'B 1.510000E-02, 'L - 4.900000E-05 // Emission profile is made of 5 components (wavelength in nm and relative intensity) // Emission profile is made of 5 components (wavelength in nm and relative intensity) // wavelength('W10.1534753, '!Rel1 0.0159) addWavelength('W10.1534753, '!Rel1 0.0159) addWavelength('W10.1541058, '!Rel1 0.0159) addWavelength('W10.1541058, '!Rel1 0.0217) addWavelength('W10.1544721, '!Rel5 0.0871) // Imput file Output file Plots Parameters // Imput file Output file Plots Parameters // Encel // Cancel // Cancel</pre>
<pre>// Cerium oxide, test // instrumental parameters (Caglioti) par !W 1.790000E-02, !V 9.270000E-03, !U 3.060000E-03 par !a 1.287000E-01, !b 1.510000E-02, !c -4.900000E-05 loadData ("a60433.raw", WPPM()) reableFileFit() // Emission profile is made of 5 components (wavelength in nm and relative intensity) // wavelengths from Berger et al. addWavelength(!w11 0.1534753, !iRel1 0.0159) addWavelength(!w12 0.1540556, !iRel2 0.57) addWavelength(!w13 0.1540586, !iRel3 0.0762) addWavelength(!w15 0.154441, !iRel4 0.2417) addWavelength(!w15 0.1544721, !iRel5 0.0871) // // putfile Dutputfile Plots Parameters // Input file Dutputfile Plots Parameters // Kernel // Cerium of the set of</pre>

Ball milled nickel powder

- Antiphase domains in Cu₃Au
- Nanocrystalline cerium oxide
- Ball milled Fe-1.5Mo
- Ball milled fluorite

ball milled Ni, WPPM

ball milled Ni, WPPM

ball milled Ni, WPPM

ball milled Ni, WPPM results

ball milled Ni, stored energy

ball milled Ni, WPPM domain size distribution

ball milled Ni, comparison WPPM-TEM

Nickel powder ball milled for 96 h

- Ball milled nickel powder
- Antiphase domains in Cu₃Au
- Nanocrystalline cerium oxide
- Ball milled Fe-1.5Mo
- Ball milled fluorite

WPPM application: APBs in Cu₃Au

Anti Phase Domains form during the ordering process in Cu_3Au . The o/d process can be thermally activated

Antiphase boundaries

54° Denver X-ray conference Colorado Springs - 2005 - Matteo Leoni

Disordered phase

Ordered phase

Various models used in WPPM

54° Denver X-ray conference Colorado Springs - 2005 - Matteo Leoni

WPPM results

	As received (disordered phase)	Thermally treated (ordered phase)				
Average dislocation density, ρ [m ⁻²]	9.2(6) x10 ¹⁵	4.7(10) x10 ¹⁴				
Effective outer cut-off radius, R_e [nm]	26(4)	1150(50)				
Wilkens arrangement parameter	2.5(3)	25(1)				
Effective edge fraction, f_E	0.66(7)	0.99(10)				
Deformation fault probability, α [%]	0.7(1)	-				
Average domain size [nm]	39.5(5)	59.0(5)				
APDB model 2.I, δ ' [%]	-	2.7(17)				
APDB model 2.II, δ '' [%]	-	4.3(15)				
Cu ₂ O phase content [wt%]	-	1.4(5)				
Unit cell parameter, a_0 [nm]	0.3750(2)	0.3755(1)				
R _{wp} [%]	5.09	6.25				
R _{exp} [%]	4.25	5.07				
GoF	1.20	1.23				

Ball milled nickel powder

- Antiphase domains in Cu₃Au
- Nanocrystalline cerium oxide
- Ball milled Fe-1.5Mo
- Ball milled fluorite

nanocrystalline CeO_2 , TEM

nanocrystalline CeO₂, WPPM

nanocrystalline CeO₂, WPPM vs. TEM

Refined cell parameters increase with decreasing average grain diameter

nanocrystalline CeO_2 , surface relaxation

Simulation for CeO₂, lognormal distribution of spheres (average 3nm, lognormal variance 0.3), surface relaxation (A=0.05nm, affected zone B=0.3 nm), dislocations (10¹⁶ m⁻², R_e=3nm), twins (1%) and stacking faults (2%)

nanocrystalline CeO₂, WPPM result

		WPPM	GSR-WPPM°	
				fixed
CELL PARAMETER				TIXEU !
cell parameter	(nm)	0.54153(3)	0.541134	
				P ⁴
SIZE DISTRIBUTION (sp	herical g	rains)		
lognormal µ		1.41(2)	1.42(1)	
lognormal σ		0.355(7)	0.364(6)	
average diameter	(nm)	4.37(1)	4.40(6)	
DISLOCATIONS				
dislocation density	(m ⁻²)	1. 4(10) 10 ¹⁶	1.08(4) 10 ¹⁶	
edge dislocations content	(%)	50	50	
cutoff radius Re	(nm)	2(1)	3(1)	
A (from elastic constants)		0.1187	0.1187	
B (from elastic constants)		0.1618	0.1618	
Wilkens parameter M		0.25(1)	0.31(3)	
GRAIN SURFACE RELAXA	TION			
relaxation factor ξ	(nm)		0.008(3)	
decay constant κ	(nm)		0.16(4)	
STATISTICAL ESTIMATO	ORS			
Rwp		5.51	5.58	
Rexp		4.67	4.67	(°) at purpturped a const
GOF		1.18	1.20	() structural const

nanocrystalline CeO_2 , TEM evidence

nanocrystalline CeO_2 , TEM evidence

nanocrystalline CeO_2 , TEM evidence

nanocrystalline CeO₂, WPPM vs. TEM

Ceria xerogel heating and isothermal treatment: lognormal size distribution

nanocrystalline CeO_2 , heating

Ball milled nickel powder

- Antiphase domains in Cu₃Au
- Nanocrystalline cerium oxide
- Ball milled Fe-1.5Mo
- Ball milled fluorite

Laboratory XRD result

WPPM modelling result for a Fe1.5Mo powder milled 128h

SR XRD result (16h milling)

Fe1.5Mo powder ball-milled for 16 hours in a Fritsch P4 planetary mill

SR XRD result (96h milling)

Fe1.5Mo powder ball-milled for 96 hours in a Fritsch P4 planetary mill

WPPM assuming a lognormal distribution

Size distributions (histogram)

Reasonable agreement between a priori lognormal and 'free' histogram distribution: $\langle D \rangle = 19.8$ (2.0) and 20.1 (3.0) nm, respectively

'Dislocation distance' versus domain size. Average number of dislocations per grain: 4 ÷ 8

Unit cell parameter: increasing with milling time. Effect of lattice defects and contamination (Cr, O_2)

Annealing kinetics (literature)

Problems with isothermal treatments: materials may considerably change during heating, before the isothermal treatment starts.

'Grain' size after ball milling is ~35 nm, increasing to ~70 nm during heating up to treatment temperature. Microstrain also changes (drastically drops) during heating.

Some information is lost or mingled.

FIG. 1. Isothermal evolution of \overline{R} in ball-milled, nanocrystalline Fe at the indicated annealing temperatures, as determined by a Fourier analysis of x-ray diffraction peak profiles. The straight lines are guides to the eye illustrating linear growth kinetics at initial annealing times; deviations from linearity become apparent when \overline{R} exceeds ~150 nm.

Recovery/recrystallization

Advantage of using defect density: not affected by the recrystallization/grain coarsening transition. Ball milled Fe1.5Mo at different heating rates (2.5, 7.5, 15)

73

Ball milled Fe1.5Mo at different heating rates (ϕ = 2.5, 7.5, 15 °C/min): activation energy of recrystallization by Kissinger method

Ball milled nickel powder

- Antiphase domains in Cu₃Au
- Nanocrystalline cerium oxide
- Ball milled Fe-1.5Mo
- Ball milled fluorite

ball milled CaF₂, ESEM

As-received powder

Acc.V Spot Magn Det WD - 5 µm 10.0 kV 5.0 4000x GSE 9.9 0.7 Torr 433587

54° Denver X-ray conference Colorado Springs - 2005 - Matteo Leoni

ball milled CaF₂, ESEM

Powder milled 64h, Ω = 200 rpm

Large aggregates are destroyed: smaller aggregates composed of small particles are present

ball milled CaF₂, modified WH

Trend of the modified Williamson-Hall plots by increasing the milling time.

An increase in the defect content (increase in the slope of the curves) is associated to a decrease in the domain size (increase in the intercept).

ball milled CaF₂, modified WH

ball milled CaF₂, WPPM result

Modelled domain size distribution: large errors are associated to low frequencies. The average (12.9 nm) is almost the same as that obtained by assuming the distribution as being lognormal. WPPM result for fluorite powder milled 128h: two phases are present (fluorite + iron, the latter coming from the vial and balls).

ball milled CaF₂, WPPM result

ball milled CaF₂, WPPM result

A summary of the microstructural WPPM results is presented in table, together with he corresponding stored strain energy.

Milling time (h)	1	2	4	8	16	32	64	128
<d> (nm)</d>	87(27)	24(2)	28(1)	20(1)	16.9(8)	19(2)	17.3(8)	12.9(1)
$ ho_{disl} (10^{15} m^{-2})$	2.1(3)	3.8(3)	4.6(6)	5.8(2)	7.0(20)	7.7(31)	9.6(16)	11.9(20)
R _e (nm)	3(1)	4.3(1)	7.5(1)	6.4(1)	4.6(1)	7.2(1)	6.6(1)	3.4(1)
f	0.47(3)	0.65(2)	0.9(1)	0.7(1)	0.96(6)	0.87(2)	0.67(9)	0.67(2)
U _{strain} (J/mol)	25	65	117	128	136	190	215	170

WPPM results confirm the qualitative finding of the modified Williamson Hall method, especially for very low and very high milling times where strain and size effects are dominant, respectively.

As expected, strain energy increases with increasing milling time and this can increase the reactivity of the powders.

Conclusions

Main advantages of the WPPM with respect to traditional methods

- correct counting statistics is used;
- problem of peak overlapping is intrinsically solved: peak profiles across the whole pattern are simultaneously refined;
- instrumental profile component can be easily included as well as appropriate background functions;
- different line profile models (e.g., dislocation, faulting, APBs, etc.) can be tested together (parameter correlations can be evaluated);
- structural constraints can be easily implemented: the WPPM algorithm can host a Rietveld routine (or vice-versa) for a simultaneous structure-microstructure refinement
- multiple phase samples can be studied (considering different microstructures) including quantitative phase analysis

For further information on: WPPM

- seeing PM2K in action
- getting a personal copy of the software

Structural/Microstructural analysis in more complex cases (<3D materials such as layered silicates, heavily faulted structures, etc.)

new DIFFaX+ release v. 2

please feel free to contact me at the conference or via e-mail (I don't bite!)

Contraction Contra	
File Edit Min Help	
Le Connect Iter Stop Update Plot Get Init files Get Result	
<pre>1 // Cerium oxide, test 2 // instrumental parameters (Caglioti) 3 par !W 1.790000E-02, !V 9.270000E-03, !U 3.060000E-03 4 par !a 1.287000E-01, !b 1.510000E-02, !c -4.900000E-05 5 6 loadData("a60433.raw", WPPM()) 7 enableFileFit() 8 9 // Emission profile is made of 5 components (wavelength in nm and relative intensit 10 // wavelengths from Berger et al. 11 addWavelength(!w11 0.1534753, !iRel1 0.0159) 12 addWavelength(!w12 0.1540596, !iRel2 0.57) 13 addWavelength(!w13 0.1541058, !iRel3 0.0762)</pre>	y)
14 addWavelength(!wl4 0.154441 , !iRel4 0.2417) 15 addWavelength(!wl5 0.1544721, !iRel5 0.0871) 16 Kernel	×
Input file Output file Plots Parameters Kernel address	
Address: Port:	
localhost 5432	<u>.</u>
Remember kernel	-
OK Cancel	
	//.

😤 PM2K ir	nterface						₽				
New	Min Heip Dpen	🔚 Save As	i≊ <mark>i≊</mark> Copy	Connect	Iter	Stop	Update Plot	ए Get Init files	s Get Result		
16 17	// add	a phase	(cubic ce	ria)							
	addPhas	e(aCeria	5.414830	e-001, aC	Ceria, a	aCeria,	90, 90, 90)			
20 21	// Inst	rumental	profile	is pV and	i follo	ws a Ca <u>c</u>	lioti curv	e, both	for HWHM		
	// FWHM	$2^{2} = W +$	V tan(th	eta) + U	tan(the	eta)^2					
	// eta convolv	= a + b t eFourier	theta + c (Caglioti	theta^2 UVWabc(U.	V. W.	a, b. c					
	//convo	lveFourie	er (Wilken	s(rho 1E-	-2, Re (6.5888880	e-002, 0.0	897934,	0.500537,	0.105762,	0.2
	convolv par !si	eFourier: gma0:=exp	(SizeDist)(sigma);	ribution(("sphere	e","logn	ormal", mu	1.31195	7e+000, s:	igma 4.2467	04e-
	par !Da	ve:=exp(n	nu) *exp(s	$igma)^2/2$; t/ovn/	log/aigm					
	par :SI	gmazexp) (ma) <mark>2</mark> ~ (Sigmad) 2	(exp(IOG (SIGN	au) 2)-1),				-
₹ <u>1</u>	// add	the neaks	3								
Input file	Output file	Plots Paran	neters								
				,	6			(CS	2).		
			E 49 D					E AA			

PM2K	interface	N								×
Edit	Min Help	2								
D New	😅 Open	🔚 Save As	ि Copy	Connect	Iter	Update Plot	Get Init files	Get Result		
31	// add ti	ne peak	3							
	addPeak (1, 1,	1,0	1.319137e+00	01)					
	addPeak (2, 0,	Ο, Θ	4.581557e+00	00)					
	addPeak (2, 2,	ο, Θ	1.779966e+00	01)					
	addPeak (3, 1,	1,0	1.942435e+00	01)					
	addPeak (2, 2,	2,0	3.759934e+00	00)					
37	addPeak (4, 0,	0,0	3.373513e+00	00)					
	addPeak(3, 3,	1,0	1.155818e+00	01)					
- 39	addPeak(4, 2,	0,0	8.782537e+00	00) 					
	addPeak(4, 2,	2,0	1.303231e+00	J1) 50 - 10001					
	addPeak(3, 3,	$\frac{3}{1}$, in	.5333 3.28766	53e+000)					
	addPeak(5, 1,	1,0	:=Int333*2.8	3429;)				_	- 11
43	addPeak(4 , 4 ,	1 0	4.808301e+00 2.425401-100	JU) 21)					
	addPeak(э, э, а а	1, U 2 Tr	4422 1 21200)1) 20e+001)					
	addPeak(· · · ·	2, III 0 0	:=Tnt 422/4.)	,00000				•	
	annippan									
ut file	Output file Pla	ots Para	meters							
										\sim
				1			,			///
			54° Denve	r X-ray conferen	ce Colorado) Springs - 200	5 - Mat	teo Leoni		

M2K interface Edit Min Help		k		- 🗆 🗵
lew Open Save As	Copy Connect Iter.	. Stop Update Plot Get In	t files Get Result	
<pre>42 addPeak(5, 1, 43 addPeak(4, 4, 44 addPeak(5, 3, 45 addPeak(5, 3, 46 addPeak(6, 0, 47 addPeak(6, 2, 48 addPeak(5, 3, 49 addPeak(6, 2, 50</pre>	<pre>1 , @ :=Int333*2.8429 0 , @ 4.808301e+000) 1 , @ 2.425491e+001) 2 , Int422 1.312990e 0 , @ :=Int422/4;) 0 , @ 1.937525e+001) 3 , @ 1.908993e+001) 2 , @ 2.069929e+001)</pre>	9;) +001)		
51 // data collect 52 // consider pol 53 mul(LPFactor(26 54 55 // Chebyshev po 56 add(Chebyshev(@ ut file Output file Plots Para	ed on a traditional BB arization as 0 and 2th .57)) lynomial used to model 2.643173e+002,0 -3.53 meters	instrument with seconda eta angle of the mono eq the background 2247e+000,0 1.322374e-00 Kernel Kernel a	ry graphite mono ual to 26.57° 2,0 -1.370882e-005)) address	•
		Address: localhos	Port: 5432	
			OK Cancel	

New Open Save As. Copy Connect Her. Stop Update Plot GetInit Nies Get Result 1 /+ Convergence wss = 2306.43 ss = 1.6362e+006 wsg = 611763 * * 3 rup: 6.14015% rexp: 4.67667% * * * 4 gof: 1.31293 gof1: 1.31293 dof1: 1338 nobs: 1361 * * 5 dof: 1338 nobs: 1361 * * * * 9 // Cerium oxide, test * * * * 10 // instrumental parameters (Caglioti) * * * * 11 pat !# 1.287000E-01, !b 1.51000E-02, !c -4.900000E-03 * * * 10 pat !# 1.287000E-01, !b 1.510000E-02, !c -4.900000E-05 * * * 11 loadData("a60433.raw", WPPH()) * * * * 10 output file Pots Parameters * * 10 readolefileFit() * * * * 113233 go1: 1.31233	File Edit	interface Min Help					ð			
<pre> /+ Convergence wss = 2306.43 ss = 1.6362e+006 wsq = 611763 srwp: 6.14015% rexp: 4.67667% gof: 1.31293 gof1: 1.31293 dof: 1338 nobs: 1361 nprm: 48 nfit: 23 r+/ // Cerium oxide, test // instrumental parameters (Caglioti) // instrumental parameters (Caglioti) par !% 1.790000E-02, !V 9.270000E-03, !U 3.060000E-03 par !% 1.287000E-01, !b 1.510000E-02, !c -4.900000E-05 la loadData("a60433.raw", WPPM()) enableFileFit() // moutfile Dutput file Plots Parameters k = 23 Convergence wss = 2306.434328 ss = 1636202.479370 wsq = 611763.000000 myp 6.140149 rexp. 4676667 gof1.312933 gof1: 1.31293 dof: 1338 nobs: 1361 mom 49 nfit: 23 2306.434328 Stop###END 2306.434328 W localhost: 5432 paelo </pre>	D New	Dpen	Save As	ि <u>∎</u> Сору	Connect	. Stop	Update Plot	Get Init files	😛 Get Result	
<pre>10 // instrumental parameters (Caglioti) 11 par !W 1.790000E-02, !V 9.270000E-03, !U 3.060000E-03 12 par !a 1.287000E-01, !b 1.510000E-02, !c -4.900000E-05 13 14 loadData("a60433.raw", WPPN()) 15 enableFileFit() 16 Input file Output file Plots Parameters k = 23 Convergence wss = 2306.434328 ss = 1636202.479370 wsq = 611763.000000 nwp: 6.140149 rexp: 4.676667 goi 1.312933 goi!1.312933 doi 1338 nobs: 1361 nput fil: 23 2306.434328 Stop###END 2306.434328 VK V</pre>	1 2 3 4 5 6 7 8 9	/+ Converg rwp: 6. gof: 1. dof: 13 nprm: 4 +/ // Ceri	ence wss 14015% r 31293 g 38 nobs: 8 nfit: 2 um oxide,	= 2306.43 exp: 4.67 of1: 1.33 1361 3 test	} ss = 1.6362€ 7667% L293	e+006 wsq =	611763			*
15 enableFileFit() 16 Input file Input file Output file Plots Parameters k = 23 Convergence wss = 2306.434328 ss = 1636202.479370 wsq = 611763.000000 rwp: 6.140149 rexp: 4.676667 gof: 1.312933 gof1: 1.312933 dof: 1338 nobs: 1361 npm: 48 nfit: 23 2306.434328 Stop###END 2306.434328 Stop####END 2306.434328 V	10 11 12 13 14	// inst par !W par !a loadDat	rumental 1.790000E 1.287000E a("a60433	parameter -02, !V 9 -01, !b 3 .raw". WH	<pre>cs (Caglioti) 9.270000E-03, 1.510000E-02, PPN())</pre>	!Մ 3.06000 !⊂ −4.9000	0E-03 00E-05			
Input file Plots Parameters k = 23 Convergence wss = 2306.434328 ss = 1636202.479370 wsg = 611763.000000 rwp: 6.140149 rexp: 4.676667 gof: 1.312933 goff: 1.312933 goff: 1.312933 npm: 48 nfit: 23 2306.434328 2306.434328 Stop###END 2306.434328 K	15 16	enableF	ileFit()							•
K = 23 Convergence wss = 2306.434328 ss = 1636202.479370 wsq = 611763.000000 rwp: 6.140149 rexp: 4.676667 gof: 1.312933 gof1: 1.312933 dof: 1338 nobs: 1361 nprm: 48 nfit: 23 2306.434328 Stop###END 2306.434328 OK Iocalhost: 5432	Input file	Output file	Plots Param	eters						
2306.434328 Stop###END 2306.434328 OK localhost: 5432 paolo	K = 23 Convergen rwp: 6.140 gof: 1.312 dof: 1338 r nprm: 48 n	nce wss = 230 1149 rexp 933 gof1 nobs: 1361 fit: 23	5.434328 ss = 1 : 4.676667 : 1.312933	636202.47937	'0 wsq = 611763.0000	000				
localhost: 5432 paolo	2306.4343 Stop### OK	328 ‡END 2306.43	4328							•
					localhost: 5432			paolo		li.
									$\underline{\mathcal{D}}$	

PM2K i ile Edit	interface Min Heln					2					_ [긔뇌
D New	Open	📕 Save As	ि Copy	😭 Connect	Iter	Stop	Update Pla	ot Get Init file	es Get Resu	lt		
25 26 27 28	// add addPhas // Inst	a phase e(aCeria rumental	(cubic ce 5.412782 profile	ria) <mark>e-001/+</mark> e is pV and	sd: 3.9 follow	97257e-(s a Cagi)03 +/, a .ioti cur	Ceria, : ve, bot:	aCeria, h for HW	90, 90, HM	90)	-
	// and // FWHM // eta convolv //convo	for eta: ^{(^} 2 = W + = a + b t eFourier lveFourie	V tan(th theta + c (Caglioti er(Wilken	eta) + U theta [^] 2 <mark>UVWabc(U,</mark> s(rho 1E-	tan(the V, W, 2. Re 6	ta)^2 a, b, c)) 	0897934	0.5005	37. 0.10	15762 . 0.:	
	convolv par !si par !Da par !si	gma0/+ 1. yma0/+ 3.99 gma2/+ 4.	(<mark>SizeDist</mark> .413994e+ 99561e+00 .080477e+	ribution(000, esd 0, esd: 000, esd	"sphere : 0.000 0.00000 : 0.000	","logn(000e+00(0e+000 - 000e+00() +/:=exp) +/:=exp(n) +/:=exp	(sigma) (sigma) (mu)*exp(: (mu)*2*	95e+000/ ; sigma)^2 (sigma0)	+ esd: 1 /2; ^2*(exp)	(log(sigma	a
39 40	// add	the peaks	3 1 0 1	575602e+	001/+ e	ad• 2 1'	1369e-00	1 +/1			J	
nput file = 23	Output file	Plots Paran	meters									-
Convergen wp: 6.140 gof: 1.3129 dof: 1.338 r	ce wss = 230 149 rexp 333 gof1 1obs: 1361	6.434328 ss = : 4.676667 : 1.312933	1636202.4793	70 wsq = 6117(63.000000							
prm: 48 nf :306.4343; itop###)K	îit: 23 28 END 2306.43	4328										•
				localhost: 54	32			paolo				//
								C				
	_	_	54° Denver	X-ray confer	ence	Colorado s	Springs - 20	005 - Ma	itteo Leoni		_	