

Medical Imaging Physics Spring Quarter Week 7-1

X-Rays

Davor Balzar

balzar@du.edu

www.du.edu/~balzar

May 6, 2008

- Midterm
- Radiology, CT
- Reading assignment:
 - CSG D 16; <u>http://www.sprawls.org/ppmi2/</u>
- Homework
 - Essay questions
 - Due Thursday, May 8

Radiation Interaction with Matter

- X or Gamma rays (photons) can interact with matter:
 - Penetration w/o interaction
 - Absorption and deposition of all energy
 - Photoelectric effect
 - Scattering and partial deposition of energy
 - Compton scattering

- Photoelectric (photon-electron) effect:
 - Photon transfers all its energy to a bound electron (K or L)
 - Electron is ejected from the atom and gets quickly absorbed close to the origination point
 - The vacancy is filled with another electron
 - Characteristic radiation (x-rays or visible light)
 - It's called Fluorescent Radiation
- Compton scattering
 - Photon bounces off an electron and changes its direction
 - Similar to partially inelastic collision of billiard balls
 - Part of the photon energy transfers to the electron

Secondary Interactions

- Electron interactions
 - Ejected electron interacts with matter and loses its energy
 - Elevated energy state of atoms
 - Ionization of atoms (33.4 eV per ionization of one "atom" of air)
 - Very important: 50-keV x-ray photon undergoing a photoelectric interaction
 - The initial interaction of the photon ionizes one atom
 - The resulting energetic electron ionizes approximately 1,500 additional atoms

- Linear attenuation coefficient
 - The fraction of photons interacting per 1-unit thickness of material
- Mass attenuation coefficient

Mass Attenuation Coefficient (μ/ρ) = Linear Attenuation Coefficient (μ) / Density (ρ)

• Area mass is the amount of material behind a 1-unit surface area

Area Mass (g/cm^2) = Thickness (cm) x Density (g/cm^3)

Overall Picture

- PE effect attenuates much stronger because all photon energy si deposited
- Compton
 - Predominant at higher energies
 - In tissue: above 30 keV

X-Ray Imaging

- Two different ways:
 - Projecting a (large) shadow image on the receptor
 - Radiography and fluoroscopy
 - Scanning with a thin x-ray beam and reconstructing 3-D image
 - Computed Tomography (CT)
- In general, larger penetration requires higher energies
- Different issues define image quality (contrast)
 - Scattered radiation

May 6, 2008

- Characteristics of the receptor and display system
- Characteristics of body parts and radiation

- X-ray imaging contrast:
 - Either atomic number (*Z*) or density difference

Material	Effective Atomic Number (Z)	Density (g/cm ³)
Water	7.42	1.0
Muscle	7.46	1.0
Fat	5.92	0.91
Air	7.64	0.00129
Calcium	20.0	1.55
Iodine	53.0	4.94
Barium	56.0	3.5
May 6, 2008	Iedical Imaging Physics 13	

• The setup:

Calcium Effects

- Calcium is a source of contrast
 - Important for imaging bones
 - Even more important in calcifications that are associated with some pathological conditions
 - Used x-ray energy will depend on the size
 - Imaging bones requires high energy
 - Smaller calcifications in breasts require lower energy

Other Contrast Media

- Iodine and Barium
 - ▶ K edge (I) = 33 keV
 - ▶ K edge (Ba) = 37 keV
- The highest contrast achieved with a slightly higher x-ray energy

Medical Imaging

Maximizes PE effect

May 6, 2008

• Chest imaging is challenging

- High contrast between lungs and the mediastinum
- High penetration needed
- Some objects that need to be identified (calcifications) are very small

- Different receptors used
 - Film dynamic range has to be high
 - Digital imaging overcomes some problems with digital processing (local enhancements of contrast,...)
- Sensitivity of different techniques

Imaging Media

• Film

- Traditionally used
- Proper exposure is crucial
- Good detail long exposures needed
- Image has to be developed
- Intensifying screen and image intensifier
 - Increase the efficiency and shorten exposure time
 - Calcium tungstate fluoresces in blue and additionally exposes the film
 - Different materials are used lately (rare-earth elements)

5 MARGIN FIGURE 9-2

First screen-film radiograph obtained by M. Pupin of Columbia University in February 1896. The radiograph demonstrates a shotgun wound to the hand.¹

Imaging Media

- Digital detectors
 - Pixels define the image
 - Manipulation and storage simpler
 - Based on photodiodes, scintillation probes, CCDs, storage phosphors,...
- Digital systems
 - Do not have limitations on exposure time, as defined by film speed
 - Wide dynamic exposure range
 - Much more sensitive than image screen systems

- Radiography furnishes information at a particular point in time
- Fluoroscopy: continuous stream of images
 - Radiation passing through the patient directed to the fluorescent screen
 - Image intensifier and camera are usually used

- Image intensifier
 - Layer of CsI emits visible light in proportion to x-ray intensity incident on the screen
 - Light ejects electrons from photocathode surface
 - Electrons are accelerated toward the anode and form an image on output screen
 - Significant brightness gain (minification and electronic gain)

RE 9-5 Section of an x-ray image intensifier.

- Computed Tomography
- Radiation Doses

