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The size-broadened pro®le given by the lognormal and gamma size distributions

of spherical crystallites is considered. An analytical approximation for the size-

broadened pro®le is derived that can be analytically convolved with the strain-

broadened and instrumental-broadened pro®les. The method is tested on two

CeO2 powders; one shows `super-Lorentzian' pro®les that were successfully

modelled under the assumption of a broad lognormal size distribution. It is

shown that the Voigt function, as a common model for a size-broadened pro®le,

fails for both very narrow and broad size distributions. It is argued that the size-

broadened line pro®le is not very sensitive to variations in size distribution and

that an apparent domain size or even column-length distribution function can

correspond to signi®cantly different size distributions.

1. Introduction

There are two common approaches to extract the crystallite

size and strain (here, we consider only an inhomogeneous

strain associated with local distortions of the lattice arising

from e.g. dislocations) from powder diffraction data by

diffraction line-broadening analysis (LBA). One is based on

the integral breadth of the diffraction lines, and gives the

volume-averaged apparent dimension in the direction normal

to the re¯ecting planes (domain size), DV (see, for instance, a

review by Klug & Alexander, 1974). The other is based on the

Fourier analysis of the line pro®le and gives the area-averaged

apparent dimension (column length) in the direction normal

to the re¯ecting planes, DA (Bertaut, 1949). Among the many

variations of the latter approach, the Warren±Averbach

method (Warren & Averbach, 1952; Warren, 1969) for the

separation of size and strain contributions by Fourier analysis,

is most widely used. These two crystallite-size dimensions are

called `apparent' because they only relate to the real average

crystallite dimension. The second derivative of the size Fourier

coef®cient is related to the column-length distribution func-

tion (Warren, 1969). Presuming an identical shape for all

crystallites, the column-length distribution function can be

calculated as an integral with a variable limit over the crys-

tallite distribution function (Smith, 1976). Determination of

the real crystallite size distribution then includes the third

derivatives of the size Fourier coef®cients, which further

ampli®es already large initial errors of the experimental

Fourier coef®cients. Additionally, Fourier coef®cients for large

harmonic numbers are unreliable because of approximations

inherent to the size±strain separation approaches (Warren,

1969; Klug & Alexander, 1974).

An unbiased determination of crystallite size and strain can

be undertaken only if the diffraction lines are not overlapped.

Otherwise, a pattern ®tting and decomposition must be

performed before any LBA can be undertaken. The ®tting is

performed with different degrees of constraints, the maximum

number of constraints being used in the Rietveld method

(Rietveld, 1969). There is ample literature on pattern

decomposition and the extraction of microstructural infor-

mation. Some recent reviewers include Delhez et al. (1993),

Langford (1999), Balzar (1999), Le Bail (1999), and LoueÈr

(1999). Gauss and Lorentz (Cauchy) analytical functions are

used most often in the whole-pattern ®tting, with a rather

loose association of strain broadening given by the former and

size broadening by the latter (for a physical basis, see, for

instance, Warren, 1959). Therefore, it has generally been

accepted that the best pro®le is a convolution of the two, that

is, the Voigt function. Especially, it has been shown that

modeling both size-broadened and strain-broadened pro®les

by Voigt functions (Langford, 1980; Balzar & Ledbetter, 1993)

is much more ¯exible and able to accommodate different

sample types and deformations. Pearson VII and pseudo-

Voigt functions were introduced as satisfactory approxima-

tions for the Voigt function, but being much faster to evaluate,

which is of utmost importance in Rietveld re®nement. Hence,

one of the most used function in pro®le ®tting is the

Thompson et al. (1987) pseudo-Voigt function, where the full

width at half-maximum (FWHM) values of the Gauss and

Lorentz components are constrained to be the same and equal

to the width of the pseudo-Voigt function itself.

There is no a priori reason to believe that a simple Voigt

model can successfully describe all size- and strain-broad-

ening-related effects in specimens. Most authors have a critical
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opinion about the ®tting of diffraction pro®les with analytical

functions such as Lorentz, Gauss or Voigt (or its approxima-

tions) functions when the main objective is the investigation of

size±strain, because these pro®les might correspond only to

very special cases of size and strain broadening. A better

approach might be the use of line pro®les derived from

physical models. In the past several years, much progress has

been made by considering the in¯uence of the dislocations on

the strain broadening (see, for instance, UngaÂr et al., 2001, and

references therein), but only very few authors have considered

the size-broadening effect. Recently, Langford et al. (2000)

discussed the in¯uence of normal and lognormal size distri-

butions of spherical crystallites on the diffraction line pro®le.

They used the numerically calculated line pro®les to ®t the

whole diffraction pattern of nanocrystalline CeO2. From the

re®ned parameters, both DV and DA were calculated and

compared with the values obtained by ®tting the conventional

Voigt, pseudo-Voigt and Pearson VII functions. They found

good agreement for DV, but the value of DA depended on the

®tting pro®le. Another important conclusion of the paper by

Langford et al. (2000) was that the pro®le calculated from

these physical models is intermediate between Gaussian and

Lorentzian. However, they have not considered the case of

large dispersion. Here, by using the same model of spherical

crystallites and the lognormal distribution, we show that at

very large dispersion the Voigt function or its approximations

fail to describe the size-broadened pro®le accurately. We show

that in the case of a large dispersion, the pro®le becomes

`super-Lorentzian', which is normally assumed to be a result of

a multimodal size distribution. We derive an analytical

approximation that is a sum of up to three Gauss and/or

Lorentz functions that can be convoluted analytically with the

strain and instrumental pro®le, thus facilitating implementa-

tion in the whole-pattern-®tting programs, such as Rietveld

re®nement programs.

The gamma distribution1 is another bell-shaped distribution

that has been used to describe the distribution of crystallite

sizes (Scardi & Leoni, 2001) or crystalline defects (Berkum,

1994). We show that in this case the pseudo-Voigt function

approximates well the size-broadened pro®le for arbitrary

dispersion. Both lognormal and gamma distributions were

used to ®t the diffraction patterns of two CeO2 powder

samples that exhibited dominant size broadening. It is shown

that for the pattern with `super-Lorentzian' pro®les, only the

lognormal distribution can successfully describe the pro®les,

assuming a monomodal size distribution.

2. The size distribution and the line profile

The Bragg differential cross section for randomly oriented

crystallites of identical shape and volume V is

d�=d
 � V�0P�s; h�; �1�

where 
 is the solid angle, �0 is the unit-volume integral cross

section and P(s, h) is the line pro®le normalized to unit area.

In P(s, h), the variables s and h are

s � 2 sin �=�ÿ 1=d and h � H=H;

where 2� is the scattering angle, � is the wavelength and d is

the interplanar distance corresponding to the reciprocal vector

H. The peak pro®le P(s, h) can be written as

P�s; h� � 2
R1
0

 �r; h� cos 2�sr dr; �2�

where the Fourier transform  (r, h) represents the ratio

between the volume common to the crystallite and its `ghost'

displaced at the distance r in the direction h and the crystallite

volume V. It has the following properties:  (0, h) = 1 and  (r,

h) =  (r, ÿh). When the crystallites are not of identical size,

the cross section must be averaged over the size distribution:

hd�/d
i = �0hVP(s, h)i. Then, analogously to (1), we can

de®ne the average pro®le

�P�s; h� � hVP�s; h�i=hVi: �3�
Now, by introducing (2) in (3) and inverting the average with

the integral over r, one obtains the Fourier transform of the

averaged pro®le:

� �r; h� � hV �r; h�i=hVi:

3. The isotropic case

We consider an isotropic case with spherical crystallites. Then,

the size distribution f is a function only of the sphere radius R,

and all de®ned quantities are independent of h:

 �r� � 1 ÿ 3�r=2R�=2 � �r=2R�3=2 for r< 2R,

0 for r � 2R,

�

P�s� � �3R=2���2�sR�; �4a�
��x� � �x2 � sin2 xÿ x sin 2x�=x4; �4b�

� �r� � �ÿ1
3

R1
r=2

dR f �R� �R3 ÿ 3R2r=4 � r3=16�; �5�

�P�s� � �3=2�3�
R1
0

dR f �R�R4��2�sR�: �6�

In (5) and (6), �n is the nth moment of the distribution f.

Taking s = 0 in (6), one obtains the inverse of the integral

breadth of the diffraction line pro®le in s space, which is just

the volume-averaged apparent crystallite dimension (domain

size):

�P�0� � �ÿ1
s � DV � 3�4=2�3: �7�

The area-averaged apparent crystallite dimension (column

length) (Warren, 1969) is obtained from the initial slope of the

Fourier transform of the diffraction pro®le. From (5) it follows

that
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for the gamma distribution given by Abramowitz & Stegun (1964).
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DA � ÿ1= � 0�0� � 4�3=3�2: �8�

4. Application to size distributions

4.1. The lognormal distribution

The lognormal distribution for spherical crystallites is

characterized by two parameters, the average radius �R of the

particles and the dispersion �2
R. It is convenient to de®ne the

dimensionless ratio

c � �2
R= �R

2 �9�
to characterize the distribution. Then the lognormal distribu-

tion and its nth moment can be written as

f �R� � Rÿ1�2� ln�1 � c��ÿ1=2 exp
�ÿ ln2�R �Rÿ1�1 � c�1=2�

� �2 ln�1 � c��ÿ1
	
; �10�

and

�n � �Rn�1 � c��n2ÿn�=2: �11�
By substituting (11) into (7) and (8), we ®nd the volume- and

area-averaged dimensions:

DV � 3 �R�1 � c�3=2 �12�
and

DA � 4 �R�1 � c�2=3: �13�
Furthermore, by introducing (10) into (5), one obtains by

analytical integration:

� �r� � �1=2��erfc �v0�r�� ÿ �3=2��r=2 �R��1 � c�ÿ2 erfc �v1�r��
� �1=2��r=2 �R�3�1 � c�ÿ3 erfc �v3�r��

	
; �14a�

where

vn�r� � �2 ln�1 � c��ÿ1=2 ln��r=2 �R��1 � c�nÿ5=2� �14b�
and

erfc �x� � 2�ÿ1=2
R1
x

dt exp�ÿt2�

is the complementary error function. Unfortunately, the size-

broadened pro®le can not be calculated analytically by the

Fourier transform of (14), or by direct integration of (6). For

the numerical computation, the integral (6), after the intro-

duction of (10), must be reduced to a standard quadrature

formula. By using simple transformations of the integration

variable, one obtains

�P�s� � �3 �R=2��1 � c�3 ���2�s �R�; �15a�
and

���x� � �ÿ1=2
R1

ÿ1
dt exp�ÿt2��ÿx�1 � c�7=2 expft�2 ln�1 � c��1=2g�:

�15b�
This integral can be computed by a standard Gauss±Hermite

quadrature.

4.2. The gamma distribution

By using identically de®ned parameters �R and c, the gamma

distribution can be written as

f �R� � ��1=c�1=c= �Rÿ�1=c���R= �R�1=cÿ1 exp�ÿR= �Rc�: �16�
Though integrable for any 0 � c < 1, (16) can be used as a

probability distribution only for c < 1.

Analogous to the calculations in the previous section, we

®nd:

�n � � �Rc�nÿ�1=c� n�=ÿ�1=c�;

DV � 3 �R�1 � 3c�=2; �17�

DA � 4 �R�1 � 2c�=3; �18�

� �r� � �0�r� ÿ �3=2��r=2 �R��1 � 2c�ÿ1�1�r�
� �1=2��r=2 �R�3�1 � 2c�ÿ1�1 � c�ÿ1�3�r�; �19a�

where

�n�r� � ÿ�1=c� 3 ÿ n; r=2 �Rc�=ÿ�1=c� 3 ÿ n� �19b�
and

ÿ�a; x� � R1
x

dt taÿ1 exp�ÿt�

is the incomplete gamma function. Finally, the line pro®le

follows as

�P�s� � �3 �R=2��1 � 3c� ���2�s �R�; �20a�
and

���x� � �1=ÿ�1=c� 4�� R1
0

dt exp�ÿt�t1=c�3��xct�: �20b�

This integral can be computed by a standard Gauss±Laguerre

quadrature, except for very small values of c, when the

computation errors become signi®cant. However, for small c,

the gamma and lognormal distributions become indis-

tinguishable [compare for example (17) with (12)], and one

can use (15b) instead of (20b) to calculate ��.

5. Determination of the distribution parameters

One can use DV and DA, obtained from the Fourier analysis of

line pro®les, to calculate values of �R and c by using (12) and

(13) for the lognormal distribution (Krill & Birringer, 1998) or

(17) and (18) for the gamma distribution. However, except for

materials with the highest crystallographic symmetry, line

pro®les commonly overlap, which makes it necessary to

reconstruct overlapped pro®le tails, usually by pro®le ®tting of

simple analytical functions (Voigt or its approximations).

Another possibility to determine the size distribution

parameters is to multiply (14) [or (19)] by the distortion

(strain) Fourier coef®cients and then ®t the result to the

Fourier transform of experimental diffraction pro®les,

corrected with the Fourier transform of the instrumental

contribution (UngaÂr et al., 2001). However, in cases of
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signi®cant pro®le overlapping, some way of pattern ®tting also

has to be used to resolve individual pro®les, which is a

requirement for performing the Fourier transform. Addi-

tionally, Fourier transforms of the experimental and instru-

mental pro®les have to be calculated numerically, which

introduces signi®cant errors.

To avoid the step of pattern ®tting and decomposition with

simple analytical functions, Langford et al. (2000) proposed

whole-pattern ®tting with individual pro®les obtained by the

numerical convolutions of the size, strain and instrumental

pro®les in real space. Scardi & Leoni (2001) proposed to

calculate the pro®le in the whole-pattern ®tting by a numerical

Fourier transform of (14) [or (19)], multiplied by the strain

and the instrumental Fourier coef®cients. In this way, multiple

numerical integrations are avoided, all effects being accounted

for in a single integral.

However, it is advantageous, especially for the Rietveld

re®nement, to avoid any numerical integration or necessary

Fourier transform of the experimental pattern. This could be

achieved if the exact size-broadened pro®le is accurately

approximated by functions that can be analytically convolved

with the strain and instrumental contributions, for instance, a

combination of Gauss and Lorentz functions. However, it is

not a priori clear whether these analytical functions give a

satisfactory approximation. To illustrate this, in Fig. 1 we

present ÿ ln� � � calculated with (14) and (19) as a function of

the variable z = r/2 �R for different values of c. From Fig. 1(a) it

is obvious that the Voigt or pseudo-Voigt functions are

unsatisfactory approximations of the size-broadened pro®le in

the case of the lognormal distribution, except for small values

of c. For the Voigt pro®le the function ÿ ln� � � must be a

parabola and for pseudo-Voigt it must have an asymptotic line,

as can be observed in Fig. 1(b) for the gamma distribution. But

there is no such asymptotic line if the distribution is

lognormal. (Note that an asymptote z = 1 exists only for c = 0.)

Alternatively, we look at the pro®le parameter � = (FWHM)�/

��, de®ned as the ratio between the full width at half

maximum of �� and its integral breadth. We plot it as a func-

tion of c in Fig. 2 for both the gamma and the lognormal

distribution. For the gamma distribution, the size-broadened

pro®le is between a Gaussian and a Lorentzian for any c.

Contrarily, for the lognormal distribution, ���x� decreases with

increasing x much slower than a Lorentzian, except for small

values of c. But, for a ®nite range of x, the pro®le could be

fairly described if more Lorentzian functions were added. This

will be discussed in the next section.

6. The analytical approximation for �U(x)

6.1. The lognormal distribution

The function ���x� given by (15b) has been calculated

numerically at equal steps in x in the range 1 � �� > 10ÿ2 by a

Gauss±Hermite quadrature with 16 nodes for 53 values of c in

the interval [0, 6]. These exact pro®les were least-squares

®tted by linear combinations of Gauss and Lorentz functions.

The following combination was found to be a good approx-

imation for c in the interval [0, 6]:
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Figure 1
ÿ ln� � � as a function of z = r=2 �R for different values of c: (a) calculated
with (14) for the lognormal distribution; (b) calculated with (19) for the
gamma distribution.

Figure 2
The pro®le parameter as a function of c for spherical crystallites,
lognormal and gamma distributions.
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���x� �

�8=3��1 � c�ÿ3

�
�1a

ÿ1
1 �1 � 4x2=a2

1�ÿ1 � �2a
ÿ1
2 �1 � 4x2=a2

2�ÿ1

� �1 ÿ �1 ÿ �2�aÿ1
3

�
exp�ÿ4x2=�a2

3� for c � 1

�1 � 4x2=a2
3�ÿ1 for c> 1

�
:

�21a�

The parameters �1, a1, �2, a2 (0 � �i � 1) were freely adjusted

during the ®t but a3 was constrained to conserve the integral

breadth of the exact pro®le:

a3 � �1 ÿ �1 ÿ �2�=�3�1 � c�3=8 ÿ �1=a1 ÿ �2=a2�: �21b�
Further, the parameters �1, a1, �2, a2 were ®tted by empirical

analytical functions in c:

�1�c� � 0:25631 � 0:018638c� 0:001155c2

� 3:5671c exp�ÿ2:0467c0:93346�; �22a�

a1�c� � 4:02326 exp�ÿ44:6429c� � 3:13982 exp�ÿ7:01128c�
� 0:580742 exp�ÿ0:413958c�
� 0:381245 exp�ÿ1:10827c�; �22b�

�2�c� �
0 for c � 0:4;
0:59951 ÿ 0:020058�cÿ 0:4�
ÿ0:45347=�1 � 3:3933�cÿ 0:4�2�
ÿ0:14604 exp�ÿ0:49272�cÿ 0:4�2� for c> 0:4;

8><
>:

�22c�

a2�c� � 0:32781�1 � 1:5399�cÿ 0:4� ÿ 0:21223�cÿ 0:4�2

� 0:18158�cÿ 0:4�3�ÿ1: �22d�

As can be seen from (21a) and (22c), the pseudo-Voigt func-

tion is a satisfactory approximation for the size-broadened

pro®le only for c� 0.4. For higher value of c, a second Lorentz

function must be added. Its weight increases with increasing c

and the weight of the Gauss component decreases. For c ' 1,

the pro®le is well approximated by a sum of two Lorentz

functions. A third Lorentz function must be added for c > 1.

For c > 6, even three Lorentz functions are not enough for a

satisfactory ®t, but it is highly unlikely to ®nd samples with

such a large dispersion of crystallite sizes. The exact �� and its

approximation by (21) in the range �x for which 1 � �� > 10ÿ2

are shown in Fig. 3 for four values of c. The decrease of the

ratio of the FWHM and � (taken as a measure of the tail

length) with c can be easily observed.

6.2. The gamma distribution

A Gauss±Laguerre quadrature with eight nodes was used to

compute ���x� given by (20b) in the segment c 2 [0, 1] with the

step �c = 0.05 under conditions similar to those for the

lognormal distribution. Furthermore, the computed pro®les

were least-squares ®tted with the following pseudo-Voigt

function:

Figure 3
The function ���x� for the lognormal distribution at four values of the
parameter c. The points are the exact values and the solid line is the ®t by
(21). The difference curve between the exact and ®tted values is also
shown.
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���x� � �8=3��1 � 3c�ÿ1��aÿ1
1 �1 � 4x2=a2

1�ÿ1

� �1 ÿ ��aÿ1
2 exp�ÿ4x2=�a2

2��; �23a�
where a2 was constrained to conserve the integral breadth:

a2 � �1 ÿ ��=�3�1 � 3c�=8 ÿ �=a1�: �23b�
Finally, we have found the following empirical expressions for

� and a1:

��c� � 1 ÿ �0:407597 exp�ÿ7:752c�
� 0:336093 exp�ÿ0:633744c�� �24a�

and

a1�c� � 4:98231 exp�ÿ27:1875c� � 1:75734 exp�ÿ4:86798c�
� 1:38542 exp�ÿ0:736325c�: �24b�

7. Application to two powder samples

We tested the model of spherical crystallites distributed

according to the lognormal and gamma size distributions on

two CeO2 powder samples. Sample 1 was prepared for the

Commission on Powder Diffraction (CPD) Size±Strain Round

Robin (see Audebrand et al., 2000; Balzar, 2001), and sample 2

is a commercially available CeO2 powder (Nanotech2). A third

sample was prepared from sample 2 by annealing at 1573 K for

3 h, followed by slow cooling in the furnace, to determine the

instrumental broadening. A comparative analysis with NIST

SRM660 LaB6 as an instrumental standard gave almost

identical results (within a single standard uncertainty). The X-

ray diffraction patterns were collected using a commercial

diffractometer in Bragg±Brentano geometry with Cu K�1,2

radiation. For every sample, three diffraction patterns were

collected, at low (20±64.5� in 2�, 0.01� step, 10 s stepÿ1 for the

annealed sample, and 0.02� step, 65 s stepÿ1 for broadened

patterns), medium (64.5±102� in 2�, 0.02� step, 25 s stepÿ1 for

the annealed sample, and 0.04� step, 130 s stepÿ1 for broa-

dened patterns), and high (102±150� in 2�, 0.02� step, 30 s

stepÿ1 for the annealed sample, and 0.05� step, 160 s stepÿ1 for

broadened patterns) diffraction angles, to obtain comparable

statistics. The diffraction patterns of the two samples show

very different line pro®les (see Fig. 4). Sample 1 shows

`regularly' broadened lines with K�1 and K�2 overlapped at

high angles, which can be successfully ®tted by the Voigt

function or its approximations, while sample 2 exhibits `super-

Lorentzian' pro®les, with long tails and K�1 and K�2 sepa-

rated at high angles.

Pro®les of the annealed sample were corrected for the

Lorentz±polarization factor and ®tted by a sum of four Voigt

functions resulting from the convolution of a Gaussian,

modeling geometrical broadening with four Lorentzians

representing the spectral pro®le of the Cu K�1±K�2 line. The

wavelengths and weights of four Lorentzians were taken from

the literature (Holzer et al., 1997). The integral breadth,

constant background, pro®le position and intensity were

adjusted in the least-squares re®nement. All pro®les gave

values of integral breadths within one standard uncertainty

except for four lines at low angles, which are affected by

asymmetry. To avoid systematic errors, the results from the

®rst pattern at low diffraction angles were not included in the

subsequent analysis.

Approximations (21) and (22) for the lognormal, and (23)

and (24) for the gamma distribution were used to model the

size-broadened pro®le. Although at least sample 1 shows

negligible strain broadening (Audebrand et al., 2000), we

allowed for a small strain correction by convolving the size-

broadened pro®le with a Gaussian and with the instrumental

pro®le. Therefore, every line pro®le was a sum of up to 12

Voigt functions for the lognormal distribution and eight for

the gamma distribution. The two diffraction patterns at

medium and high diffraction angles were least-squares ®tted

independently. The free parameters were the intensity and

position for every pro®le, and the global parameters included

two background parameters, the size-distribution parameters
�R, c and the Gaussian strain parameter. For sample 1, the

strain parameter was ®xed to zero as we did not see any

improvement in the ®t. For sample 2, the strain parameter,

although very small [h"2i1/2 = 0.00033 (1)], improved the ®t

slightly.
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Figure 4
The CeO2 powder pattern ®tted with the size-broadened pro®le
calculated by (15a) and (21a) for the lognormal distribution: (a) sample
1, Rwp = 0.0390; (b) sample 2, Rwp = 0.0477.2 Commercial names are given for identi®cation purposes only.
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The ®t results for the lognormal distribution are shown in

the Fig. 4. For clarity, we plot both medium- and high-angle

diffraction patterns together, although they were ®tted inde-

pendently. As can be seen from the difference plots and

reliability factors, the diffraction patterns were ®tted with

similar reliability using lognormal and gamma distributions

(compare Figs. 4 and 5). The ®t with the gamma distribution

was even slightly better for sample 1 (Fig. 5a), but clearly

inadequate for sample 2 (Fig. 5b). For the latter, the gamma

distribution cannot model the size-broadened pro®le to yield a

`super-Lorentzian', in accord with the theoretical discussion in

the preceding paragraphs. The numerical results are

summarized in Table 1. The reported values are the average of

the re®ned values obtained by independent ®tting of the two

diffraction patterns at medium and high diffraction angles.

Two details worth noting are as follows. First, the

`super-Lorentzian' pro®le of sample 2 results in the

large value of the c parameter. Second, sample 1

gives signi®cant differences in both �R and c para-

meters for the two distributions, but the corre-

sponding values of DV and DA differ by only 1.12

and 1.68%, respectively. In the Fig. 6(a), we present

the distributions calculated with the parameters �R
and c from the Table 1. The curves 1 and 2 are the

lognormal and the gamma size distributions,

respectively. Although they have similar shape, there is a

signi®cant difference that could be a basis for discrimination if

other data (such as transmission electron microscopy data) are

available.

The results obtained for sample 1 implicate that signi®cantly

different size distributions can give practically indistinguish-

able diffraction pro®le. Because the pro®le is an integral over

the distribution, relatively large variations in integrand can

still give small variation in the result of integration. In other

words, the diffraction pro®le is insensitive to the details of the

Figure 5
The CeO2 powder pattern ®tted with the size-broadened pro®le
calculated by (20a) and (23a) for the gamma distribution: (a) sample 1,
Rwp = 0.0375; (b) sample 2, Rwp = 0.1435.

Table 1
The results of the ®t for samples 1 and 2.

The average radius �R, volume-averaged DV, and area-averaged DA apparent domain sizes
are given in AÊ units. Because of a poor ®t, the values for sample 2 with gamma size
distribution are not given.

Sample 1 Sample 2

Distribution �R c DV DA
�R c DV DA

Lognormal 89.7 (6) 0.181 (4) 222 (3) 167 (2) 16.8 (2) 2.820 (2) 1408 (14) 328 (3)
Gamma 69 (1) 0.39 (1) 224 (5) 164 (3)

Figure 6
The distribution functions of the crystallite radius (a) and column length
(b) calculated with the parameters �R and c, as obtained from the ®t of
CeO2 diffraction patterns: (1) sample 1, lognormal distribution; (2)
sample 1, gamma distribution; (3) sample 2, lognormal distribution. In (a)
the curve (3) was multiplied by 10ÿ1. In (b), only 50% of the area under
curve (3) is shown in the given range.
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distribution. One can obtain values for DV and DA that well ®t

the diffraction pattern, but do not yield signi®cant physical

information about the actual crystallite-size distribution.

Although to a somewhat smaller degree, the column-length

distribution function, which is commonly extracted from the

Warren±Averbach (1952) type of analysis, is also relatively

insensitive to the crystallite-size distribution. To illustrate this,

we calculate the volume-averaged column-length distribution

function from the second derivative of the Fourier coef®cients

(Guinier, 1963):

p�L� � L�d2 � =dr2�r�L � �3L2=8�3�
R1
L=2

dR f �R�

�
�3L2=16 �R3�1 � c�3� erfc �v3�L�� for the lognormal

distribution,

�3L2=8 �R3�1 � 2c��1 � c���3�L� for the gamma

distribution.

8>>><
>>>:

Fig. 6(b) shows column-length distribution functions corre-

sponding to the size distribution functions from Fig. 6(a). The

curves 1 and 2 differ in the position of the maximum by only

2 AÊ and in height of the maximum by 9.76%.

8. Summary and concluding remarks

We have shown that the size-broadened line pro®les can be

satisfactorily modeled by an a priori size distribution. In

particular, we have discussed two widely used distributions:

lognormal and gamma. An important difference between the

lognormal and gamma distributions is that the former can

model a much wider range of actual crystallite-size dispersions

found in practice. We have shown that the so-called `super-

Lorentzian' pro®les can be explained by a broad size distri-

bution. The line pro®les of a commercial CeO2 powder that

showed tails falling off more slowly than the Lorentzian

function were successfully ®tted on the assumption of a broad

lognormal size distribution, but not by using the gamma

distribution. We avoided the need to convolute numerically

either the size-broadened pro®le with the strain and instru-

mental pro®les or the numerical Fourier transforms by

approximating the size-broadened pro®le by simple analytical

functions that can be analytically convolved.

We found that the size-broadened pro®le can be approxi-

mated by a pseudo-Voigt function, which is commonly used in

Rietveld re®nement programs, only for samples with a limited

dispersion in the region 0 � c � 0.4 for the lognormal distri-

bution, and in the region 0 � c < 1 for the gamma distribution.

It is worthwhile noting here that the gamma distribution in the

region 0 � c < 1 does not yield Lorentzian-like size pro®les, as

is evident from Fig. 2. Consequently, a commonly used

approximation of a size pro®le by a Lorentzian is incompatible

with an assumed gamma crystallite-size distribution. From x3,

it follows that for the lognormal distribution the ratio DV/DA =

(9/8)(1 + c) can take values in the range [1.125, 1), and for the

gamma distribution the same ratio DV/DA = (9/8)(1 + 3c)/(1 +

2c) can take values in the range [1.125, 1.5). The size-broa-

dened pro®le is very often modeled by the Voigt function. It

was found (Balzar & Ledbetter, 1993) that the size-broadened

Voigt function requires the ratio of volume-averaged and

area-averaged domains to be in the range [1.31, 2) in order for

the column-length distribution function to be positive. The

lower limit of this ratio constrain the dispersion parameter, c

� 0.164 for the lognormal distribution and c � 0.245 for the

gamma distribution. Therefore, the Voigt function appears to

be an inadequate approximation for very sharp lognormal and

gamma size distributions and a broad lognormal distribution

of spherical crystallites! These additional restrictions are not

placed on a pseudo-Voigt function, which indicates that the

latter might be a better approximation for the size-broadened

pro®le for samples with narrow crystallite-size distributions.

The fact that the pseudo-Voigt and particularly the Voigt

function are found satisfactory in most cases probably indi-

cates that most powders fall within a relatively narrow range

of dispersion for both lognormal and gamma distributions.

Lastly, we argue that in principle, diffraction does not yield

enough information to determine the crystallite-size distri-

bution. Diffraction line-broadening analysis yields only the

parameters of an a priori size model, either through a

phenomenological approach (Voigt, pseudo-Voigt or other

arbitrary chosen analytical functions) or through a physically

based model, such as lognormal or gamma distribution of

spherical crystallites. Although the latter approach can explain

`super-Lorentzian' line pro®les, as it was shown in the case of a

broad lognormal distribution, the `super-Lorentzian' line

pro®les can be alternatively explained by a multimodal size

distribution. Therefore, additional information, preferably

obtained by an unrelated method such as transmission elec-

tron microscopy, is necessary to give an unequivocal deter-

mination of the size distribution, although this is not easy to

achieve by any experimental method in the case of a broad

distribution with a large percentage of small crystallites, such

as our sample 2. Contrarily, if the measured crystallite-size

distribution is narrow, it is dif®cult to discern which bell-

shaped function gives a better ®t.

We gratefully acknowledge Nathalie Audebrand and Daniel

LoueÈr (University of Rennes), for preparing the CeO2

powder, and the Commission on Powder Diffraction (CPD) of

the International Union of Crystallography (IUCr) for

supporting the Size±Strain Round Robin.

References

Abramowitz, M. & Stegun, I. A. (1964). Handbook of Mathematical
Functions, p. 930. Washington, DC: National Bureau of Standards.

Audebrand, N., AuffreÂdic, J.-P. & LoueÈr, D. (2000). Chem. Mater. 12,
1791±1799.

Balzar, D. (1999). In Defect and Microstructure Analysis by
Diffraction, edited by R. Snyder, J. Fiala & H. J. Bunge, pp. 94±
126. IUCr/Oxford University Press.

Balzar, D. (2001). http://www.boulder.nist.gov/div853/balzar/.
Balzar, D. & Ledbetter, H. (1993). J. Appl. Cryst. 26, 97±103.
Berkum, J. G. M. van (1994). PhD thesis, Delft University of

Technology, p. 136.

J. Appl. Cryst. (2002). 35, 338±346 Popa and Balzar � Size-broadened profile 345

research papers

electronic reprint



research papers

346 Popa and Balzar � Size-broadened profile J. Appl. Cryst. (2002). 35, 338±346

Bertaut, E. F. (1949). C. R. Acad. Sci. Paris, 228, 187±
189.

Delhez, R., de Keijser, T. H., Langford, J. I., LoueÈr, D., Mittemeijer,
E. J. & Sonneveld, E. J. (1993). In The Rietveld Method, edited by
R. A. Young, pp. 132±166. IUCr/Oxford University Press.

Guinier, A. (1963). X-ray Diffraction, p. 139. San Francisco: Freeman.
Holzer, G., Fritsch, M., Deutsch, M., Hartwig, J. & Forster, E. (1997).
Phys. Rev. A, 56, 4554±4568.

Klug, H. P. & Alexander, L. E. (1974). X-ray Diffraction Procedures,
2nd ed. New York: John Wiley.

Krill, C. E. & Birringer, R. (1998). Philos. Mag. A, 77, 621±640.
Langford, J. I. (1980). In Accuracy in Powder Diffraction, Natl Bur
Stand. Spec. Publ. No. 567, pp. 255±269.

Langford, J. I. (1999). In Defect and Microstructure Analysis by
Diffraction, edited by R. Snyder, J. Fiala & H. J. Bunge, pp. 59±81.
IUCr/Oxford University Press.

Langford, J. I., LoueÈr, D. & Scardi, P. (2000). J. Appl. Cryst. 33, 964±
974.

Le Bail, A. (1999). In Defect and Microstructure Analysis by
Diffraction, edited by R. Snyder, J. Fiala & H. J. Bunge, pp. 535±
555. IUCr/Oxford University Press.

LoueÈr, D. (1999). In Defect and Microstructure Analysis by
Diffraction, edited by R. Snyder, J. Fiala & H. J. Bunge, pp. 673±
697. IUCr/Oxford University Press.

Rietveld H. (1969). J. Appl. Cryst. 2, 65±71.
Scardi, P. & Leoni, M. (2001). Acta Cryst. A57, 604±613.
Smith, W. L. (1976). J. Appl. Cryst. 9, 187±189.
Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20,

79±83.
UngaÂr, T., Gubicza, J., RibaÂrik, G. & BorbeÂ ly, A. (2001). J. Appl.
Cryst. 34, 298±310.

Warren, B. E. (1959). In Progress in Metal Physics, Vol. 8, edited by B.
Chalmers & R. King, pp. 147±202. New York: Pergamon.

Warren, B. E. (1969). X-ray Diffraction, pp. 251±314. New York:
Addison-Wesley.

Warren, B. E. & Averbach B. L. (1952). J. Appl. Phys. 23, 497.

electronic reprint


