ICT-4361 Homework 4

Purpose

This exercise will familiarize you with the basic
graphics functionality of Java, using AWT and

Swing.

Our approach will be to display the dice throws myDice: Dice |-
from our previous homework, and display them

DiceView

_=| ActionListener

setDice

graphically. gethumberShowing

For this exercise, we will restrict ourselves to actionPerformed
displaying one face of 6-side dice. To extend the

paintComponent

exercise, think about how you might handle other
kinds of dice!

What to Hand In

Please hand in a listing for each program requested,
formatted in an easy-to-read style.

Ensure your name, and the name of the file is

available in a comment at the top of the file.

Also, ensure that you have a sample of the output

from the program.

If your program fails to compile, hand in your error

listing as your output.

For each question asked, provide one or two A

sentences summarizing your answer. Please be both i

complete and succinct. Drawing Area

Problems

I. Make a graphical dice panel. If properly

made, this Dice can be used and embedded in

\I

any of your game applications.
Remember, you already have a Dice class, and
this panel will leverage it.

1. Create a class called DiceView which extends JPanel and implements
ActionListener.
2. Create a private data member to hold an object of type Dice
3. Create a setter method for the Dice object.
4. Create a public method for the ActionListener called actionPerformed which
does the following:
= Checks if the ActionEvent action command is "Roll"
= [f so, check the Dice instance to ensure it is non-null
= [fthe dice is non-null, roll () the dice
= Call repaint()
5. Create a public method for the component called paintComponent, which does the
following:
= Gets the size of the JPanel and sets local variables width and height
= (Clears the rectangular area of the JPanel
= Draws a rectangle (or rounded rectangle), preferably a having equal sides, to fill most
of the area in the JPanel (this represents the side of the dice)
= [f'the dice is not null, displays the value of the dice within that rectangle
= [f the dice 1s null, displays the text string "No Dice" in that rectangle

public static void main(String[] args) {

JFrame frame = new JFrame();
frame.setDefaultCloseOperation(JFrame

JButton button = new JButton("Roll");
DiceView dv = new DiceView();
button.setActionCommand("Roll");
button.addActionListener (dv);

Dice d = new Dice();

// To test what happens with no dice,
dv.setDice(d);

frame.add(BorderLayout.CENTER,dv);
frame.add(BorderLayout.SOUTH,button);

frame.pack();
frame.setSize(300,300);
frame.setVisible(true);

Notes

6. Create a main program to test out your JPanel. You may use the following program, or
modify it for your own purposes:

.EXIT ON_CLOSE);

comment out the next line

This separation between the model (Dice) and the view and controller is called the MVC pattern,

and is used throughout Java.
The JPanel is found in package javax.swing

The ActionListener interface is found in package java.awt.event
Calling repaint () arranges for the component to be redrawn as soon as convenient. The

redrawing will invoke paintComponent at the right time.

The public method for the ActionListener has the form: public void

actionPerformed(ActionEvent e)

The public method for the painting routine has the form: public void
paintComponent (Graphics g). Note that even though Graphics is an abstract class,
whatever implementation happens to be used (Graphics2D in this case), the right methods will be

called without having to cast the parameter.

To get the current size of the JPanel, you can use the getSize () method, which returns a
Dimension (from package java.awt). This has attributes width and height.

The Graphic methods clearRect, drawRect (or drawRoundedRect), and drawString
should suffice for the actual drawing in the exercise. If you want to draw the pips on the dice, you

will want £fillOval.

Note that the provided main program has no menus, and no exit button. However, it does arrange
to close your application when the frame is closed (this is not the default!).
This homework exercise is very extensible. Here are a few ideas for extending it:
o Add a second dice. Note that you could add one dice to the EAST and one to the WEST
(leaving the CENTER empty). Also note that you will have to add each dice as

ActionListeners for the button..

o Add an exit button. To make the button appear side-by-side with the other button, you must
create a new JPanel, and put the existing JButton (Roll) in the EAST, and the new JButton
(Exit) in the WEST. Then this JPanel is installed into the application the same way the old
Roll JButton was, above. You need to attach an ActionListener to the button like so:

class ExitHandler implements ActionListener {
public void actionPerformed(ActionEvent e) {

System.exit(0);
}
}

This could be an inner class if you like.

Add a row of dice. For this one, it is best to create a new class which extends JPanel and
puts the dice in a GridLayout or a FlowLayout.

An instance of this class, which could have an int parameter in its constructor, to tell you
how many dice, can be placed in the CENTER, instead of the single dice.

This is the way panels are nested to form a more complex display

Add a menu. For this one, start simple--a File menu with an Exit button.

You will use a JMenuBar, create a JMenu titled File, and a JMenultem titled Exit.

Your JMenuItem Exit pick must add an ActionListener, another instance as above in
the Exit button case.

Complete this as follows:

Add the JMenu to the ITMenuBar; add the JMenuItem to the TMenu, and then tell the
frame to install the JMenuBar with frame.setJMenuBar (menubar); (or whatever
you called your menu bar).

Evaluation
| Criteria ||Weight |
|Create a proper DiceView class || 10%|
|Create a proper data member for dice ” 10%|

|Create a proper setter method for the dice || 10%|

|Create a poper actionPerformed method || 25%|

|Create a proper paintComponent method || 25%|

|Create a proper main program and output || 20%|

