ICT-4361 Homework 5a

Purpose

This exercise will familiarize you with using polymorphic
containers and text processing in Java.

We will use the idea of “form letter processing” to convey
these ideas.

Form letters are a way of combining a form letter template
(text and placeholders for substitution) with a data collection
(say, names and addresses) and some computed variables
(such as the date) to create a useful result (say, a personalized
business letter).

As you can see from the class diagram, a FormLetter is a
concrete class derived from the abstract class
FormLetterTemplate. Each instance of FormLetter
can be used to create one new form letter per Properties
object.

The FormLetterTemplate class has four public methods
(other than constructors). Two build the form letter, and two
are used for producing output.

¢ addDataItemEntry is used to add one
DatalItemEntry to the form letter

e addTextEntry is used to add one TextEntry to
the form letter

e printFormLetterTemplate outputs the form
letter template itself to the provided output stream. This
method will show the placeholders.

¢ doFormLetter creates and outputs a form letter,
using the Properties object to provide values for
all the placeholders.

In this exercise we will complete the classes for the form
letter framework, and process a form letter to produce the
appropriate results.

In the followup exercise for next week, the data collections
and output will use files rather than internal storage.

What to Hand In

Please hand in a listing for each program requested, formatted
in an easy-to-read style.

Ensure your name, and the name of the file is available in a
comment at the top of the file.

You do not need to submit files from the homework starter
files that are unchanged.

Also, ensure that you have a sample of the output from the
program.

If your program fails to compile, hand in your error listing as
your output.

For electronic submission, “zip” your submission together
into a single file, to ensure nothing is missing;

For each question asked, provide one or two sentences

Recipient Data Store —
Runtims Collaorton Cartoan

get recipient data as Property

Form Letter Hello main()

formLetter.addTextEntry(“Dear “);

formLetter.addDataltem Entry("fi
formlLetter.addTextEntry(* for o
formLetter.addDataltem Entry(“fill-in-3");
formlLetter.addTextEntry("fn");

Form Letter (Template) ~ ——

addTextEntry Dear {fill-in-1},

>
addDataltemEntry . | Great new offer! You can have a
P {till-in-2} for only {fill-in-3}t

Form Letter Output
4| Dear Max,

| | Great new offer! You can have a
new blender for only $40°1
EW DTENTET Tor Ny S3U™T

Visualization of Form
Letter Formation:
Template applies

property files to
produce form letters

FormLetterHello
+main(String args|]): void

MyFormLetter
+main(String[| args): void

FormLetter
-templateCollection: Collection
+FormLetter(String t)
+addTextEntry
+addDataltemEntry J
+doFormLetter
+printFormLetterTemplate

! Abstract | X | !
FormLetterTemplate - - - - - - - - - FormLenerEnIB?l- - _A_b_s :rﬁc_t_ -
-title: String _ +getTemplateString(): String
+FormLetterTemplate(String t) +getFormLetterString(): String
+getTitle(): String +doProcess(Properties p): void

+addTextEntry(String text): void
+addDataltemEntry(String prop): void

+doFormLetter(Properties p, PrintStream out): void

+printFormLetterTemplate(PrintStream out): void

| TextEntry | | DataltemEntry

HWS5 Form Letter
Class Diagram

summarizing your answer. Please be both complete and
succinct.

Problems

I. Create and Test a Form Letter

1. Start with the homework starter files. These will

give you a good framework for creating your FormLetterHelio: FormLetter
FormLetterTemplate.

2. Examine the FormLetterEntry abstract fitle: String
class, and create the two derived classes —

TextEntry and DataItemEntry. Be sure to

begin to implement (or let your IDE do it) all the
abstract methods in each derived class.

3. Add fields and methods to the FormLetter ‘ Container

R | doFormlLetter = .
class. These should include a container for _| DataltemEntry

FormLetterEntrys, appropriate constructors date

for FormLetter, and the methods outlined in

the class starter. printFormLetterTemplate [5 TextEntry
4. Compile and run the FormLetterHello 1 Hello,

program. When you have implemented the
above, it should compile and run.

5. Capture the output of your test run for your
submission.

6. Create a new class called MyFormLetter, [—‘ | TextEntry
!

| DataltemEntry

J name

which represents another example of a form
letter. It must contain at least one TextEntry
and at least one DataItemEntry. This letter

should be different than FormLetterHello,
and use different Property entries. Compile it,
run it, and same the output of your test run for
your submission.

7. Optional: Run the JUnit tests and make them all
pass (this might take minor changes to your classes).
You will need to ensure the JUnit libraries are on your classpath.

If you submit this optional part, be sure to capture the output showing the
JUnit tests passed and include with your submission.

HWS5 Form Letter
Composition

IL. Question: Describe why these files will not compile as they are. Be specific, and

display some confirmation for your description. The answer may be stored in a
text file, or incorporated as comments in your code.

Notes

You can put the sample classes into your NetBeans environment by putting all the
files except FormLetterTest. java into the source directory, and this
remaining file into the test directory. Similar instructions for Eclipse. Or, you can
also simply use ant with the provided build.xml file.

While you could create the TextEntry and DataItemEntry at the bottom of
the FormLetterEntry. java, please instead create them as separate, public
classes.

Note that while doing input and output in the DataItemEntry, TextEntry,
and FormLetter code, you should always use the out instance passed in as a
parameter, rather than coding System. out into these methods. This will ensure
that all your output happens properly, and jUnit tests will succeed.

In a production scenario, output from doFormLetter would go to a mass
mailer, or printer, or such device.

Note that the FormLetter class must store an ordered list of
FormLetterEntrys. This is best handled by using one of the Collections
classes in the java.util package. Various methods in your FormLetter

class will iterate through the collection. For example, a List of
FormLetterEntry would be a reasonable collection, instantiated by, say, a
LinkedList or ArrayList of FormLetterEntry. Because your ordered
list stores FormLetterEntry instances, it will be able to store TextEntry
objects and DataItemEntry objects (through inheritance).

Note that the Properties object can contain things that might change for each
letter (e.g., name) as well as computable things (e.g., date).

Your addTextEntry method creates a new TextEntry using the provided
text and adds it to your list

Your addDataItemEntry method creates a new DataItemEntry using the
provided name and adds it to your list

Your doFormLetter method should first go through each item on your list, and
invoke its doProcess method, providing the Properties object it needs for
substitution. Afterward, it should invoke formLetterString() to place the
result on the provided output stream.

FormLetterHello is the simplest test program using a FormLetter and
this set of classes, so try running it first.

You must also be sure not to add extra spaces when printing the templates or
FormLetter, and finally when printing out the template, you must print out
DataItemEntrys as <name>. That is, a less-than, the name of the data item,
and then a greater-than.

Evaluation
| Criteria ” Weight|
|Answer for the question, including justiﬁcation” 10%|
|TextEntry derived class and test || 20%|
|DataItemEntry derived class and test ” 20%|
|F0rmLetter class completion || 20%|
|F0rmLetterHeIlo test program and output ” 15%|
|MyF0rmLetter test program and output ” 15%|

|JUnit tests completed and output ” +10%|

