ICT-4361 Homework 6a

Purpose

This exercise will familiarize you with file processing, and
provide additional experience in text processing in Java.

FormLetterFileReader

In Java Programming Exercise 5 you created the mechanism [(hpuFie:Fle |

. . . Fi LetterFil File(String fileN : void
to understand a template, and to cause substitution to occur in [ormLatier: FomLettsr :;::Tgign:;";zr,',,; ;}’:'"Eﬁl,r:;”'”
one +main{ Strin args): void +readLine !: Slring
In this exercise, we allow the template to be stored in a file, _
and for the Property substitutions to do the same. FormLettér

Collection

addTexiEntry s

addDataltemEntry
What to Hand In oform attar 1

printFormLetterTemplate A

Please hand in a listing for each program requested, formatted
in an easy-to-read style. N ! N ey

fis Abstract 5 ! 1
[Formieierlempaie -y - [FormloRaERy |
Title ;
. . . getTemplateString
Ensure your name, and the name of the file is available in a :ggg;ﬁggmw getFormLetterString
doP

comment at the top of the file. doFormLetter EIELES

printFormLetterTemplate /
You do not need to submit files from the homework starter
files that are unchanged. ‘ ‘ ‘ '

TextEntry DataltemEntry

Also, ensure that you have a sample of the output from the
program.

Class diagram

If your program fails to compile, hand in your error listing as your output.

For electronic submission, “zip” your submission together into a single file, to ensure
nothing is missing; for hardcopy submission in a face-to-face class, please ensure your
output is neatly formatted and legible.

For each question asked, provide one or two sentences summarizing your answer. Please
be both complete and succinct.

Problems

1. Use file processing to have your form letter and data read from the file system.

1. Begin with the classes you developed last week (or adopt last week's
instructor sample solution).

2. Create a class called FormLetterFileReader which has the following
methods:

= A no-parameter constructor, which simply creates a
FormLetterFileReader
= A constructor which takes a file name
= A setFile method which takes a file name, representing the file to
read the FormLetter contents from
= A readLine method which returns one line read from the opened
(and buffered) file
= A getTokens method which returns an array of tokens found on
the line. A token is either a buffer of text, or a replacement data item.
These data items are recognized by starting with a { and ending with
at.
= Note that the FormLetterFileReader may store the array
differently, internally; but it needs to return the result as an
array of Strings. The Strings will be tokenized and
constructed into a FormLetter by the FormLetterFile.
= A way to test the class to ensure it works properly (e.g., read a file,
and output the resulting tokens). This can be a main method, or can
be JUnit tests.

3. Create a class called FormLetterFile which encapsulates a simple
main method (not very different than FormLetterHello in many
ways):

= Gets two filenames from the command line or by prompting the user
(implement one of the choices)
= One filename is for the FormLetter, and one for the
Properties.
= Creates a new FormLetterFileReader using this filename as a
parameter.
= Creates a FormLetter instance with the filename as the title
= While it can read a line from the FormLetterFileReader:

= Break the line into tokens
= For each token, if it is a simple string (i.e., doesn't begin with a
{), add it as a text entry to the FormLetter.
= Otherwise, add it as a data item entry to the FormLetter.
= Note that various text methods, such as trimming and
substrings will be needed to make this go smoothly.
= [oad a Properties with the contents of the associated file name.
= Invoke the doFormLetter method on the FormLetter.
4. Run the FormLetterFile main method and capture the result for your
submission.
5. Create your own FormLetter template file and associated
Properties file, and test your program by running FormLetterFile
with them.

Notes

o The client method is expected to either call the one-parameter constructor or call
the no-parameter constructor followed by calling setFile. Calling readLine
without opening the file first should throw an appropriate exception getTokens
should simply return a zero-length array of Strings if called with an empty String

e The setFile method needs to arrange for the file to be read one line at a time.
This will make it convenient for the input to be setup as a Buf feredReader
object. A BufferedReader requires a FileReader to construct it. A
FileReader is constructed from a File Also, note that it is possible the file
does not exist, or perhaps cannot be read. Thus, your setFile may want to call
a setInput function like so:

private void setInput(String filename) throws FileNotFoundException {
try {
FileReader f = new FileReader(filename);
input = new BufferedReader(f); // Assumes input is the field name for the BufferedReader
} catch (FileNotFoundException fnfe) {
System.err.println("File "+file+" not found");
throw fnfe; // rethrow the exception

e The readLine method can use delegation return input.readLine(), just
like any other Buf feredReader. However, you may also need to catch a
possible IOException it may raise.

e The String split method provides an efficient way to parse input strings.

o The class StringTokenizer provides another very flexible way to
parse input strings.

o Note that, each time you find a "{" token, you next need look for a
"}" token, to find the end of the DataItemEntry name.

o The basic StringTokenizer methods are hasMoreTokens (), which
returns true when there is another token to read, and
nextToken (delimiter), which returns the next String bounded
by that delimiter.

o When constructing a StringTokenizer, you may provide the
default token delimiter, and a boolean indicating whether you'd like
to get the delimiters themselves back as tokens.

o Also, you can just find the tokens using the String indexOf and
substring methods.
o It is also possible to use the Scanner class

e When accumulating your array of results, you may find it useful to temporarily
store them in a List<String>, since it is easy to add Strings to it. A
LinkedList of String is a good implementation class. To turn a List into
an array, remember to use the toArray method of the collection object, and pass
anew String[O0] as a parameter to coerce the return type.

e Properties can be loaded directly, given a file name.

e While you will create your own form letter, a sample form letter file might have
content like so (or even be a web page):

{date}
Dear {name},
BREAKING: {newsHeadline}

This is an ALL HANDS ON DECK SITUATION:
If we don't fight back, the {otherParty} will get their way.

Donate to {thisParty} TODAY so we can finally put an end to the {otherParty} shenanigans!

Give {amount}£f now
Or, donate another amount

Paid for by the {thisParty} PAC, not authorized by any candidate or candidate's committee.

e While you will create your own properties file, a sample file, useful for the letter
above, might have content like so:

name=Loyal Party Supporter

newsHeadline=Rt. Hon. Lord North calls for OUTRAGEOUS INCREASE IN TAXES on TEA!
thisParty=Sons Of Liberty

otherParty=British

date=May 8, 1773

amount=1
Evaluation
Criteria Weight
FormLetterFileReader, test, and output 35%
FormLetterFile program and test output 35%
Your own FormLetter template, and its output run 30%

