
MCIS-4135
Homework Assignment 6

Purpose:
This assignment will give you the opportunity to begin abstract data type programming in C++. The
assignment is written a lot like a recipe, with the hope that you will admire the result, and review
the steps that you took to get there.
This assignment in MCIS-4135 is very similar to an assignment that I use as the entry assignment
for a full C++ course.
This assignment will illustrate how programs are built of multiple files in a programming
environment.
This assignment will also explore ways of establishing encapsulation and data abstraction using
multiple source files.
This assignment will also explore some C++ output formatting capability.

What to hand in:
Hand in listings of the program which must be captured in 3 or more files: a header file, a test
program, and at least one implementation file. Also, hand in the output of a sample run (or runs) of
the program. All of these must be formatted in a reasonable style. Choose sufficient test cases to
ensure your functions work properly.

Problems:

Dating Skills:

1. Create a “project” in Visual C++ (or the equivalent in whatever environment you are
using). We will create 3 files in this project, one header file called date.h, and two C++
source files, called date.cpp and hw6.cpp.

2. Create a header file (date.h) containing a proper definition for a Date (see the notes
for one good date definition).Add the function prototypes to the header, even before you
implement them. Put the appropriate standard #ifndef/#define/#endif directives
in the header file, in the right places.

3. Add functions for setting and printing a Date (DateSet and DatePrint). These
are further described in the Notes section below.

4. Create a test program (hw6.cpp) that uses the functions for setting and printing a Date.
Add tests one at a time, building and running your program after each one. This may
seem tedious, but really lets you build success on success, and progress on progress.

5. Add an implementation for each of the remaining functions in the header file into the
implementation file (date.cpp). See the notes section for each implementation. Each
time you add a function, go back to your test program (hw6.cpp) and add an
appropriate test. This way, you will continue making progress on the exercise, one small
step at a time. When you are done, there will be at least one test for each function.

6. Compile and run your final program, capturing the output for submission.

Notes:
The goal of the exercise is to think in object-oriented terms. Your Date structure serves the role of
the object in Object oriented terms (and is declared in the date.h file):

MCIS-4135 Homework 6
struct Date
{

int month;
int day;
int year;

}; /* One implementation (there are others) */

One other aspect of header files is to protect the header against multiple inclusions. This is done by
starting the file (date.h) with the lines

#ifndef DATE_H
#define DATE_H

and then ending it with the last line
#endif

which makes the content of the file ignored should it be included a second time. Without this, there
are situations that cause the compilation to fail because of multiple definitions of the same thing.
The variables of that type serve the roles of instances of the object:

Date d2, d3; /* Found in the test main program (hw6.cpp) */

Thus, each of the functions should manipulate the instances of the object–they are the messages of
the object-oriented paradigm. The message interface is defined in the date.h file (after the
structure, but before the #endif):

void DatePrint (Date);
int DateDay (Date);
int DateMonth (Date);
int DateYear (Date);
Date DateSet (int yr, int mon, int dy);
Date DateNow ();

Note that this approach begins to isolate clients of your code from the internal details: where you
might have had a piece of client code (in a piece of test code before we added DateSet) like:

Date d1;
d1.month = 3;

 d1.day = 31;
 d1.year = 1995;
 cout << "Printing March 31, 1995: ";

cout << d1.month << '/' << d1.day << '/' << d1.year << endl;

which is dependent on your representation. You will now have code in hw6.cpp like:
Date d1;
d1 = DateSet (1995, 3, 31);
DatePrint (d1);

Functions become simpler and smaller. The function DateSet, for example, in date.cpp, may
resemble:

Date DateSet (int y, int m, int d) {
Date date;
date.day = d;
date.month = m;
date.year = y;
return date;

}

Even though it may seem strange, providing simple functions to get (and sometimes set) the
different components of a structure end up being very useful:

int DateDay (Date d) {
return d.day;

}

Page 2 of 3

MCIS-4135 Homework 6
int DateMonth (Date d) {

return d.month;
}
int DateYear (Date d) {

return d.year;
}

By continuing in this vein, one can even make sure that a program printing a date does not really
care about how it is represented (here we are using “cout” from <iostream>):

void DatePrint (Date d) {
cout << d.month << '/' << d.day << '/' << d.year;

}

Finally, the most complicated of these functions gets the current date to populate the structure.
Time-oriented functions in the standard library are in the standard header <ctime>. You must
include this header to use these data structures or functions. This header uses pointers, so you can
look through this code to see how use of structures and pointers to structures works.
The function time_t time(time_t *t) returns the number of seconds since 1 Jan 1970 GMT. The
function struct tm *localtime(time_t *t) takes (the address of) this result and converts it into a
structure with tm_month, tm_day, tm_year, etc. as components. Though we won't use it in this
exercise, it is interesting to note that the function time_t mktime (tm*) takes one of the time
structures, completes it reasonably, and returns the equivalent seconds count.
A function to set the date to the current time may look as follows:

Date DateNow () {
 Date d = { 1, 1, 1970};

time_t t = time(0L); /* Stores the current time in t */
tm *tp; /* In C this would have been struct tm */
if (t == (time_t)(-1))
 return d;
tp = localtime(&t); /* Turns t into a tm structure */

d.day = tp->tm_mday;
d.month = tp->tm_mon + 1; /* Perversely, months are 0-11 */
d.year = tp->tm_year + 1900; /* The tm structure uses 2-digit years */
return d;

}

Evaluation Criteria:
Code will be evaluated both for proper style and for correct content. Your code should be in 3 (or
more) files: date.h, date.cpp, and hw6.cpp (date.cpp could be subdivided into many other files if
you choose).
30 Interface file: proper definitions and content, date type, compliant set of operations
35 Implementation file: proper use of C++ for implementation

35
Test program: full test of interfaces, including boundary conditions. Inclusion of results.
Note: If your program doesn’t compile, hand in the error listing as the results!

Page 3 of 3

	Purpose:
	What to hand in:
	Problems:
	Dating Skills:

	Notes:
	Evaluation Criteria:

