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Abstract—This paper proposes an extremum seeking controller
(ESC) for simultaneously tuning the feedback control gains
of a knee-ankle powered prosthetic leg using continuous-phase
controllers. Previously, the proportional gains of the continuous-
phase controller for each joint were tuned manually by trial-
and-error, which required several iterations to achieve a balance
between the prosthetic leg tracking error performance and the
user’s comfort. In this paper, a convex objective function is
developed that incorporates these two goals. We present a theo-
retical analysis demonstrating that the quasi-steady-state value of
the objective function is independent of the controller damping
gains. Furthermore, we prove the stability of error dynamics of
continuous-phase controlled powered prosthetic leg along with
ESC dynamics using averaging and singular perturbation tools.
The developed cost function is then minimized by ESC in real-
time to simultaneously tune the proportional gains of the knee
and the ankle joints. The optimum of the objective function shifts
at different walking speeds, and our algorithm is suitably fast to
track these changes, providing real-time adaptation for different
walking conditions. Benchtop and walking experiments verify the
effectiveness of the proposed ESC across various walking speeds.

Index Terms—Powered prostheses, legged locomotion, rehabil-
itation robotics, extremum seeking, virtual constraints.

I. INTRODUCTION

STATE-OF-ART powered knee-ankle prostheses are often
controlled using a predetermined set of joint impedance

controllers [1]. In this approach, the gait cycle is typically
divided into multiple (usually four or five) phases, and the
transitions between different walking phases are governed
by finite state machines [2]–[4]. Operation in each phase is
governed with a unique controller [2], [3], [5]. The controller
in each phase has at least three tunable impedance parameters
of stiffness, viscosity, and equilibrium angle for each actuated
joint. This results in dozens of impedance parameters and
switching rules, which needs to be changed as activities
change, such as walking at different speeds.

Automating the control parameter tuning process can greatly
improve the patient experience by adapting to varying walking
conditions encountered in daily life. Some notable progress has
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been made in real-time automatic selection of control param-
eters. In [6], [7], rule-based fuzzy logic inference schemes,
which are based on subjects’ walking data, were developed in
order to automate the tuning process of the knee joint control
parameters. As noted by the authors in [8], this approach
relies heavily on the knowledge and the experience of the
human experts to formulate fuzzy rules. Adaptive dynamic
programming was then used in [8] to alleviate the need for
a human expert and demonstrate simultaneous tuning of the
knee joint impedance parameters in simulations. However, it is
unclear whether either of these approaches can simultaneously
tune the impedance parameters of multiple joints, where the
dynamics of one joint affects the other. The presented results
in [6], [7] are also limited to a single walking speed (0.6
ms-1). Apart from tuning impedance control parameters in
powered prostheses, efforts have been made in the field of
exoskeletons to tune the ankle joint parameters in real-time in
order to improve the metabolic cost of the subject [9]–[11].
However, using the metabolic cost as an objective function
leads to very slow adaptation that typically requires an hour to
find a local optimum. Also, it is unclear how the optimization
time is affected with additional knee joint parameters. This
slow process might not be applicable for adapting to real-
time changes in behavior or environment. In addition, the
measurement of metabolic cost requires off-board sensors, e.g.,
face masks, which might be obtrusive to the user. An alter-
native approach to impedance-based controllers for powered
prostheses are continuous-phase control schemes, which are
inspired from the virtual constraints framework for robotic
locomotion control (see, e.g., [12]–[16]). Continuous-phase
gaits are kinematic relationships between the prosthesis joint
angles that are parameterized by a mechanical phasing variable
and are enforced via feedback. The continuous-phase control
schemes reduce the number of tunable parameters compared
to an impedance-based controller. In [16], a continuous-phase
control scheme was employed in the stance period while an
impedance-based controller was employed in the swing period.
This approach reduced the number of tunable parameters
by half. In [17], [18], the number of tunable parameters
were further reduced by dividing the gait cycle into stance
and swing phases and using a single controller for each. A
single continuous-phase controller was used throughout the
gait cycle in [19], which further reduced the number of tunable
parameters to four, i.e., the proportional derivative (PD) gains
for the knee and the ankle joints. Recently, unified phase-based
gaits have been successfully tested on amputees across speeds
and inclines [20], [21].

Although the continuous-phase control schemes for pow-
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ered prosthetic legs reduce the number of tunable control
parameters, the tuning of these controllers is still carried out
manually and may need to change across different activi-
ties, such as walking at different speeds. The problem of
automatic real-time tuning of continuous-phase controllers for
powered prosthetic legs remains an open problem. Although
progress has been made in model-based adaptive control of
biped robots [22], such model-based approaches, which rely
on input-output feedback linearization, are difficult to use
in powered prosthetic applications because of the need for
expensive multi-axis load cells in order to measure the patient-
prosthesis socket interaction forces [18].

In this paper, we present a methodology for automatic
tuning of continuous-phase controllers for powered prosthetic
legs using a perturbation-based extremum seeking control
(ESC) scheme [23], [24]. ESC, being a model-free control
method, requires neither the explicit knowledge of the powered
prosthesis nor the patient wearing it. However, it requires
an objective function that quantifies both the prosthetic leg’s
performance and the user’s comfort. It is the first time in the
literature that an objective function is being developed for
real-time adaptation of a powered prosthetic leg to different
walking conditions via ESC. Indeed, there has not been
sufficient research on defining quantifiable objectives that can
represent walking factors capable of improving the human-
prosthesis interaction [25]. The objective functions (related
to tracking error) proposed in [26] enjoy fast convergence
to the optimum but do not consider the subject’s discomfort.
The use of metabolic cost as an objective function [9]–[11]
provides a measure of the subject’s discomfort but is too slow
for real-time adaptation to changing behaviors. In our previous
work [27], we developed a theoretical framework for designing
ESC schemes to tune the PD gains of powered prosthesis
controllers to reduce the tracking error. That work was limited
to verifying the effectiveness of our algorithms in simulations
(i.e., no experimental results) and made no consideration of
the user’s comfort, which is an important aspect in practical
application. In this paper, we use ESC to experimentally
perform simultaneous tuning of the proportional gains for the
knee and ankle joints with fixed derivative gains. In particular,
we extend the literature on auto-tuning of powered prosthetic
legs in the following significant ways:
Contributions of this paper

(i) Development of a convex objective function for powered
prosthetic legs - Based on our observations from exten-
sive benchtop and walking experiments, we developed
a convex objective function for continuous-phase control
of powered prosthetic legs, which can be used at different
walking speeds. In particular, the objective function in
[27] has been modified to incorporate the patient’s com-
fort level. The characteristic of the developed objective
function is that its optimum varies across walking speeds.

(ii) Simultaneous tuning of multiple joints across different
walking speeds - This paper experimentally verifies the
effectiveness of ESC for tuning the proportional gains
for a powered knee-ankle prostheses across different
walking speeds. To the best of our knowledge, this is
the first contribution towards demonstrating simultaneous

adaptation of the proportional gains for both the knee and
the ankle joints of a transfemoral powered prosthetic leg.

(iii) Demonstrating that the quasi-steady-state value of the
developed objective function is independent of the damp-
ing gains Kd - We present a theoretical analysis for the
closed-loop robot dynamics with the ESC, which demon-
strates that the quasi-steady-state value of the objective
function is independent of the damping gains. Changing
the damping gains not only exacerbates the control due
to noisy velocity measurements, but also, our analysis
shows that tuning the damping gains does not necessarily
improve the steady-state performance of the powered
prosthetic leg. Finally, using tools from averaging and
singular perturbation theory, we prove the stability of
error dynamics of continuous-phase controlled powered
prosthetic legs along with the ESC dynamics for tuning
the proportional gains.

With respect to the automatically tuned impedance-based
controllers in the literature, our adaptation algorithm enjoys a
unique combination of several features. First, we demonstrate
the effectiveness of our adaptation algorithm across different
walking speeds as opposed to carrying out adaptation at a fixed
walking speed [6], [7]. Our algorithm takes approximately one
minute to track real-time changes in the optimal proportional
gains, which is sufficiently fast compared to prior approaches
that take 1-2 hours for adaptation [9]–[11]. Second, our ESC-
based online adaptation scheme is capable of simultaneously
tuning the proportional gains of continuous-phase controllers
for multiple joints. Third, our optimization method only needs
the onboard prosthetic leg sensors.

The rest of this paper is organized as follows. In Section II,
we present the experimental setup, notion of continuous-phase
control of powered prosthetic legs, and a brief review of
the perturbation-based ESC framework that is used in this
paper. Next, we develop a convex objective function for ESC
in Section III based on fixed-gain benchtop and walking
experiments with the prosthesis and present a theoretical
analysis of the objective function along with the stability
proof of the prosthetic leg’s error dynamics with the ESC
dynamics. Next, in Section IV we present the experimental
results of the proposed approach implemented on the powered
prosthetic leg, which was tested by an able-bodied human
subject wearing a knee-bypass adapter as in [20]. We discuss
these results in Section V and provide concluding remarks in
Section VI.

II. PRELIMINARIES

This section briefly presents the hardware setup, continuous-
phase control of the powered knee-ankle prosthesis [19], [21],
and the perturbation-based ESC [23].

A. Prosthetic Leg Embedded Systems and Sensing

The benchtop and walking experiments were performed on
the UT Dallas powered knee-ankle prosthetic leg, which is
shown in Fig. 1. A multi-stage transmission was developed
in [20], [21] to actuate both the knee and ankle joints. The
actuator consisted of a high-speed Maxon EC-4pole 30, 200
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(a) Benchtop mode (b) Walking mode

Fig. 1: Different experimental setups: (a) In the benchtop mode,
the top of the prosthetic leg knee joint was attached onto a rigid
bench; (b) In the walking mode, an able-bodied subject walked on
the prosthetic leg using a knee-bypass adapter.

Watt brushless direct current motor powered by a Elmo Gold
Twitter R80/80 motor amplifier. The motor was connected to a
timing belt drive with sprockets, giving a 4:1 reduction at the
ankle and 2:1 at the knee. The sprockets were connected to a
Nook 12 mm diameter, 2 mm lead ball screw connected to a
lever arm that actuated the joints. The motor amplifiers were
powered by an Agilent 6673A 35V/60A DC power supply.

A dSPACE DS1007 system with Freescale OorIQ P5020,
2 GHz processor was tethered to the prosthesis for control
computation and data acquisition sampled at 1 kHz. US
Digital EC35 encoders provided measurements of the joint
angles. The joint velocities were numerically computed using
a first-order Butterworth low-pass filter (LPF) at 8 Hz cutoff
frequency. To measure the global thigh angle for the purpose
of calculating the phase variable (Section II-B), a LORD
Microstrain 3DMGX4-25 inertial measurement unit (IMU)
was placed on top of the prosthetic knee joint. Further detail
of the prosthesis design specifications can be found in [21].

B. Continuous-Phase Control of Powered Prosthetic Legs

In continuous-phase control for powered prostheses, the
desired trajectory generation for the knee and ankle joints
are synchronized to the thigh angle. This means that the
evolution of the knee and the ankle joint trajectories are
not parameterized by time, but rather by a monotonically
increasing variable sh (computed from the user’s global thigh
angle). This variable sh ∈ [0, 1) is called the phase variable,
and its extreme values represent the start and the end of a
gait cycle. At the end of a gait cycle, sh is reset to 0. Thus,
the phase variable parameterization of the desired trajectory
allows synchronization of the prosthetic leg joint patterns to
the phase of the user. The continuous-phase control of powered
prosthetic legs includes:

1) Computation of phase variable [20], [21]: The phase
variable sh is computed online using measurements of the

thigh angle from the IMU according to

sh(ν(t)) =
ν(t)− ν+

ν− − ν+
(1)

where “+” and “-” indicate the value of the phase angle ν
at the start and the end of the gait cycle, respectively. The
phase angle ν(t) is computed using the patient’s thigh angular
position φ(t) and its integral Φ(t) =

∫ t
0
φ(τ)dτ as

ν(t) = atan2
(
(Φ(t) + Γ)z, (φ(t) + γ)

)
(2)

where the constant parameters z, γ, and Γ represent an
adaptable scaling factor, the thigh angle shift, and the thigh
integral shift, respectively (see [21] for further details).

2) Phase-based generation of desired trajectories [19]–
[21], [28]: Consider a desired joint trajectory expressed as
a function of a phase variable. Let the discrete signal x[n]
represent this trajectory sampled over N evenly distributed
points. The DFT is a linear transformation of the signal
x[n] that produces a sequence of complex numbers across a
spectrum of discrete frequency components X(k):

X(k) =

N−1∑
n=0

x[n]W kn
N , k = 0, 1, . . .K (3)

where N is the finite number of samples, K is the running
index for the finite sequence of k (up to N − 1), and WN =
e−j(2π/N) is the complex quantity. Since x[n] is periodic, there
are a finite number of discrete frequency terms X(k). After
obtaining the frequency content terms X(k), the original signal
can be reconstructed using Fourier interpolation:

x[n] =
1

N

K∑
k=0

X[k]W−knN , n = 0, 1, . . . , N − 1 (4)

where X[k] = Re{X[k]} + jIm{X[k]} and W−knN =
Re{W−knN }+ jIm{W−knN } in standard complex form. Since
the joint kinematic signals are real numbers, only the real
part of x[n] is taken into consideration. Equation (4) can then
be decomposed as a summation of sinusoids using Euler’s
relationship ejΩ = cos Ω ± j sin Ω, Ω ∈ R, for WN within
the DFT. From this we finally obtain the desired joint angle
function

hd(sh) =
1

2
ρ0 +

1

2
ρ

N/2
cos(πNsh) (5)

+

N
2 −1∑
k=1

[
ρk cos(Ωksh)− ψk sin(Ωksh)

]
where Ωk = 2πk, and ρk and ψk are the computed coefficients
from the real and imaginary terms of X[k] from (4).

3) Control Law: Continuous-phase controllers coordinate
the knee and ankle patterns of the prosthetic leg by enforcing
constraints that are parameterized by a common phasing vari-
able [19], [21]. In particular, a continuous-phase gait encodes
the desired motions of the actuated variables in the form of
output functions

y = q − hd(sh) (6)

where y = [yk ya]T ∈ R2 is the tracking error, q =
[qk qa]T ∈ R2 is the measured angular position of joint i (with
i = k for the knee and i = a for the ankle), and hd(·) ∈ R2
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Fig. 2: Perturbation-based ESC block diagram.

is the desired periodic joint angle trajectory as a function of
the normalized phase variable sh ∈

[
0, 1
)
.

In the continuous-phase approach [16], [20], [21], a model-
free output PD control law of the form

u = −Kpy −Kdẏ (7)

is used to enforce the continuous-phase gait in (6). The
proportional and the damping gains in (7) are given by

Kp =

[
Kpk 0

0 Kpa

]
; Kd =

[
Kdk 0

0 Kda

]
(8)

where Kpi ,Kdi are the proportional and the damping gains for
the ith joint, respectively. The control torque vector is given
by u = [uk ua]T ∈ R2, where uk and ua are the torques
applied to the prosthetic knee and ankle joint, respectively. The
permissible range of values for Kp and Kd were obtained in
experiments by trial-and-error. In particular, for all values of
Kpk ∈ [1.6, 7] and Kdk ∈ [0.1, 0.3], the knee joint dynamics
were stable. Similarly, for all values of Kpa ∈ [4, 17] and
Kda ∈ [0.4, 1.5], the ankle joint dynamics were stable. The
manual tuning procedure of PD gains for walking experiments
using continuous-phase controllers was described in [21]. In
practice, for a more compliant, smooth behavior of the knee
joint, ẏk was replaced with the measured angular velocity q̇k
in (7).

C. Perturbation-Based Extremum Seeking Algorithms

Consider a single-input single-output nonlinear control sys-
tem

ẋ = f(x, u) (9)
y = h(x) (10)

where x ∈ Rn is the state vector, y ∈ R is the output, and
the functions f : Rn ×R→ Rn and h : Rn → R are smooth.
Given the state feedback control law u = α(x, θ), parameter-
ized by a tunable parameter θ, the closed-loop control system
dynamics are given by

ẋ = f(x, α(x, θ)). (11)

The objective of ESC is to maximize/minimize, in real-time,
a suitably defined objective function J(·) at the steady-state
for the closed-loop dynamics trajectories without knowing a
priori the extremum θ∗ of the objective function J(·).

A well-known extremum seeking algorithm, due to Krstic
et al. [23], [24] is the perturbation-based ESC, whose basic

architecture is depicted in Fig. 2. The signal d(t) = a sin(ωt),
which is called the dither signal, is a periodic perturbation
signal that is added to the current best estimate of the param-
eter θ, which is denoted by θ̂. Taking θ as input, the objective
function J(·) generates the output, which is passed through a
high pass filter (HPF) that removes the DC component, η, to
give J − η. The output of the HPF is demodulated by using
the same dither signal d(t). The resulting demodulated signal,
denoted by ξ, is then passed through a LPF that generates the
output ζ, which is proportional to the gradient of the current
measured output J(·). Next, the signal ζ(t) is passed through
an integrator with gain k to give θ̂. The sign of the integrator
gain k should be chosen such that the inequality kJ ′′ < 0
holds.

In the extremum seeking literature [24], [29], [30], the
following assumptions are typically made regarding the control
system dynamics and the convex objective function: (i) the
closed loop dynamics are much faster than the extremum
seeking adaptation dynamics and the system (11) is locally
exponentially stable for every θ ∈ I , where I is an interval
consisting the range of stable controller parameters; (ii) there
exists a unique optimum θ, denoted by θ∗, of the convex
objective function J(·). Considering the first order LPF and
HPF with cut-off frequencies, ωl and ωh, respectively, the ESC
dynamics can be written as

˙̂
θ = kξ (12)
ξ̇ = −ωlξ + ωl(J − η)a sin(ωt) (13)
η̇ = ωh(J − η). (14)

The choice of ESC parameters, i.e., a, ω, k, ωh, ωl, are critical
to stable adaptation. These should be chosen such that a time
scale separation between the plant and the ESC dynamics
holds. For the powered prosthetic leg, the choice of ESC
parameters are explained in detail in Appendix A. Additional
details regarding ESC can be found in [23].

III. DEVELOPMENT AND ANALYSIS OF ESC ON A
POWERED PROSTHETIC LEG

In this section, we describe the structure of ESC for powered
prosthetic legs. Next, we explain the observations obtained
from fixed-gain experiments, and then using these observations
we develop a convex cost function for ESC. Finally, we present
a theoretical analysis of the developed objective function
and a stability proof of the error dynamics of a continuous-
phase controlled powered prosthetic leg along with the ESC
dynamics.

A. Structure of ESC for Powered Prosthetic Legs

The block diagram of the proposed automatically tuned
controller is shown in Fig. 3. As it can be seen from Fig. 3,
there are three main components: (i) a continuous-phase PD
controller, denoted by Γ; (ii) ESC, whose operation mechanism
has been explained in Section II-C and; (iii) the objective
function block, denoted by J(·). In ESC, it is assumed that
the system is operating at its steady-state. However, the error
dynamics of a powered prosthetic leg are not steady-state
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Fig. 3: Block diagram of the proposed automatically tuned controller.
The controller Γ is a PD controller that drives y and ẏ to zero. The
controller parameter, Kpi is automatically tuned by ESC in real-time
such that the objective function in (16) is minimized.

during walking. In particular, it was observed in prior ex-
periments that the ankle tracking error significantly increased
during the terminal stance phase, i.e., ankle push-off phase.
This is due to the fact that during the ankle push-off, the ankle
actuator had to overcome the reaction torque from the subject’s
weight. Consequently, in order to employ perturbation-based
ESC scheme proposed in [23], [29], the joint tracking error
must pass through proper filters such that a steady-state value
of the objective function can be achieved.

Obtaining a steady-state tracking error : Recently, a LPF
was designed in [31] to perform ESC for a non-steady state
output of the system. In order to generate an approximately
steady-state ankle tracking error, we used a rate limiter, which
limits the rate of change of the ankle joint tracking error. The
rising and the falling rates were limited to 10 and -5 deg/sec,
respectively and were chosen such that the rate of the dither
signal was not limited. For instance, a dither signal with a =
1, ω = 0.2 Hz has a maximum rise and fall rate of 0.8 and -0.8
deg/sec, respectively. We remark here that in order to produce
a steady-state ankle joint tracking error profile, the saturation
of the objective function, as in [32], was avoided here. This is
because the saturation of the objective function could introduce
additional tuning parameters, depending on the walking speed.
Once the steady-state joint tracking error was obtained, it was
used as an input to the amplitude detector, which is discussed
in Section III-B.

B. Fixed-Gain Experiment Observations and Developing a
Convex Cost Function

This section focuses on developing a convex ESC objec-
tive function with respect to the proportional gains through
fixed-gain experiments on the powered prosthetic leg. We
performed fixed-gain benchtop and walking experiments at
different walking speeds to understand the behavior of the
trajectory tracking error performance for different proportional
gains. In the benchtop mode, the prosthetic leg knee joint was
attached onto a rigid bench (see Fig. 1a) and the prosthetic
leg joints were commanded time-based human knee and ankle
trajectories [33]. To study the effect of the proportional gain
of the knee controller Kpk on the steady-state knee tracking
error at a particular walking speed, the proportional gain of
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Fig. 4: Plot of averaged knee filtered tracking error for slow (0.25
Hz), normal (0.5 Hz) and fast (0.65 Hz) trajectories with varying
proportional gain of the knee controller Kpk in benchtop mode. The
proportional gain of the ankle controller Kpa was fixed at 10 for all
the experiments.
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Fig. 5: Plot of averaged ankle filtered tracking errors for slow (0.25
Hz), normal (0.5 Hz) and fast (0.65 Hz) trajectories with varying
proportional gain of the ankle controller Kpa in benchtop mode. The
proportional gain of the knee controller Kpk was fixed at 3 for all
the experiments.

the ankle controller Kpa was fixed at 10 and Kpk was varied
in the following trials. The damping gains for both of the
joints were fixed throughout the experiments at Kdk = 0.25
and Kda = 0.6. Three different values of Kpk , i.e., 1.8, 3,
and 5 were tested each at slow, normal, and fast walking
trajectories resulting in a total of 9 experiments. The slow,
normal, and fast walking speeds were defined at 0.25, 0.5,
and 0.65 Hz, respectively, in the benchtop mode. Similarly,
in order to study the effect of Kpa on the ankle tracking
error, the same procedure was repeated with Kpk fixed at
3 while different values of Kpa , i.e., 8, 10, and 14, were
tested in the subsequent experiments. Each experiment was
run for 30 seconds, and the instantaneous joint tracking errors
were recorded. In total, taking two joints into consideration,
18 fixed-gain benchtop experiments were performed.

In the walking mode, an able-bodied subject walked on
the prosthetic leg using a knee-bypass adapter as in [20] (see
Fig. 1b). The prosthetic leg joints were commanded to follow
human trajectories based on the phase variable (see (1)). A
similar procedure was followed to understand the effect of
Kpk and Kpa on the joint tracking error, resulting in a total
of 18 fixed-gain walking experiments. The slow, normal, and
fast walking speeds were defined at 0.89, 1.12, and 1.34
metres/second (m/s). The protocol for walking experiments
was approved by the Institutional Review Board (IRB) at the
University of Texas at Dallas. To prevent fatigue, the subject
was given sufficient rest in between the experiments. All the
experiments were conducted on the same day and took three
hours to complete them.
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(a) Objective functions at fixed
walking speed

Normal (1.12 m/s)
Fast (1.34 m/s)

Slow (0.89 m/s)

(b) Objective functions at different
walking speeds

Fig. 6: Illustrations of the objective functions from fixed-gain
experiments. (a) Double plot of tracking error objective function,
J i
err,ss on the left y−axis (shown in red) and discomfort objective

function, J i
dcmf on the right y− axis (shown in blue) with respect to

Kpi . The green curve represents J i
cvx,ss; (b) Plot of tracking error

objective function, J i
err,ss for different walking speeds, indicating

the presence of different optimums.

Figs. 4, 5 show the bar plots of averaged filtered knee
and ankle tracking error, denoted by ȳk and ȳa, respectively,
in the benchtop mode. A similar trend was observed in the
walking experiments and is therefore not shown here for
brevity. With joint PD control action, the tracking error of the
system reaches a limit cycle that is nearly sinusoidal of the
form, yi(t) = y0 + ri sin(ω0t), where y0, ri, ω0 are constants.
In order to extract the amplitude of the limit cycle, ri, we
followed the method in [29]. It was noticed in the experiments
that the DC component y0 for both of the joints were approx-
imately zero. Therefore, we concentrated on estimating the
magnitude of the tracking error, e.g., ri. To accomplish this,
we used a first order HPF with a cut-off frequency Ωh = 0.1
Hz. The output of the HPF, ri sin(ω0t) is then squared to
give (r2

i /2)(1− cos2(ω0t)), which is then passed through an
eighth order LPF with a cut-off frequency Ωl = 0.35 Hz to
give r2

i /2. This combination of the HPF, squaring and LPF,
known as amplitude detector, obtained the amplitude of the
limit cycle and eliminated the limit cycle frequency, ω0 (here,
cadence). The underlying assumption in designing a good
amplitude detector was that ω0 � Ωh,Ωl [29]. For our case,
the walking frequency at slow and fast speed corresponded
to walking at 0.45 and 0.65 Hz, respectively. However, since
the walking frequency was very small, we used a high order
analog LPF (eighth order) so that the walking frequency was
mostly eliminated. We used the output of the LPF as the joint
tracking error objective function at the steady-state, denoted
J ierr,ss. The average knee filtered tracking error, ȳk, is then
obtained by taking the root mean of Jkerr,ss. We have the
following two observations from these experiments:

1) For a particular speed, ȳk decreases with the increase in
the proportional gain of the knee controller Kpk . This can
be noticed by comparing the magnitudes of the bars in the
individual bins in Fig. 4. Based on the first observation,
the graph of J ierr,ss with respect to Kpi for the ith joint
should look like the red dashed curve in Fig. 6a.

2) For a particular proportional gain of the knee controller
Kpk , ȳk increases with the increase in the walking speed.
This can be noticed by comparing the magnitudes of

the same colored bars across different bins in Fig. 4.
A similar trend of J ierr,ss with respect to Kpi was
noted at all the three walking speeds. However, based
on the second observation, due to the difference in the
magnitude of J ierr,ss for different walking speeds, the
graph of J ierr,ss with respect to Kpi should be shifted
up for fast walking, as compared to slow walking and
depicted in Fig. 6b.

The same observations held for the ankle joint as shown
in Fig. 5. Based on the observations in Figs. 6a, 6b, we
conclude that attempting to minimize J ierr,ss with respect to
Kpi would result in the highest allowable Kpi for producing
the best tracking performance. However, it was noted from
fixed-gain experiments that the best tracking performance did
not imply optimal performance of the prosthetic leg from
the perspective of the subject. Due to the large inertia of
the powered prosthesis and high Kpi , the interaction with
the subject would be too forceful and makes the subject feel
less comfortable [21]. Therefore, in addition to J ierr,ss, the
objective function must also include a term that takes into
account the subject’s discomfort.

The comfort of the user can be effectively quantified by
either measuring the socket interaction forces or by com-
puting the joint jerks, i.e., the derivative of joint acceler-
ations [34]. The socket interaction forces are expensive to
measure [18] due to the need of expensive multi-axis load
cells. Additionally, joint acceleration readings are extremely
noisy, resulting in inaccurate information that cannot be used
reliably in control implementation. On the other hand, we
know from fixed-gain experiments that the proportional gain of
the PD controller directly affects how forceful the leg interacts
with the patient. The higher the proportional gains, the more
forceful the prosthetic leg interacts with the patient, resulting
in less comfort. Therefore, we accommodate the comfort of
the user through the barrier-like function

J idcmf =
1

(Kpi − K̄pi)
2

(15)

where K̄pi represents the upper bound of Kpi for stable leg
operation. It can be noticed that as Kpi approaches K̄pi in
(15), J idcmf increases, thereby indicating a greater subject
discomfort. The graph of J idcmf with respect to Kpi is depicted
by the blue dashed curve in Figs. 6a and 6b. Thus, we
conclude that, in order to provide the greatest user comfort,
attempting to minimize J idcmf with respect to Kpi would
result in lowest allowable Kpi . However, as noted from the
fixed-gain experiments, this would result in a worse tracking
performance.

In order to have a balance between the tracking performance
and the user’s comfort, we propose the following convex sum

J icvx,ss = wierr · J ierr,ss + widcmf · J idcmf (16)

as the convex cost function at the steady-state, where wierr
is the preference on the tracking error objective function and
widcmf = 1− wierr is the preference on the user’s discomfort
objective function. The green curve in Fig. 6a indicates the
shape of J icvx,ss. To bring J ierr,ss and J idcmf on the same scale,
a suitable scaling factor for J ierr,ss was chosen. In particular,
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the scaling factor for the knee and ankle were chosen as 0.01
and 1, respectively. Depending on the convex combination
of the objective functions, J ierr,ss and J idcmf , the optimum
Kpi , denoted by K∗pi , might move left or right in Fig. 6a.
Also, based on the second observation, Fig. 6b shows that
the intersection of J ierr,ss with J idcmf produces different K∗pi
for different walking speed. This clearly indicates that K∗pi
changes with walking speeds. This means the prosthesis is
more forceful only when the task demands it. The optimum
Kpi for slow, normal, and fast walking speeds are indicated
by K∗spi ,K

∗n
pi , and K∗fpi in Fig. 6b. Once the convex objective

function in (16) is developed, the goal of ESC is to simultane-
ously tune Kpi for the knee and the ankle joints by minimizing
J icvx,ss.
Remark 1: In practice, since the comfort level can vary
between different patients, the weights wierr, w

i
dcmf on the

objective functions J ierr,ss, J
i
dcmf have to be tuned just once

by a technician. Once the weights are chosen for the user
based on their preference, ESC will automatically tune the
proportional gains across different walking speeds.
Remark 2: Minimizing the objective function J icvx,ss in (16)
can also be seen as a multi-objective optimization problem
with fixed a priori weights. Therefore, multi-objective ESC
techniques like [35], [36] could be used to automate the
selection of a priori weights.

C. Theoretical Analysis

The prosthetic leg knee and ankle dynamics are governed
by [18]

M(q)q̈ + C(q, q̇)q̇ +G(q) + E(q)Tλ = u+ τsocket (17)

where M(q) ∈ R2×2 is the mass matrix, C(q, q̇) ∈ R2×2

is the matrix of Coriolis/centrifugal forces, G(q) ∈ R2×1

is the vector of gravitational forces, E(q) ∈ Rc×2 is the
Jacobian matrix associated with c physical constraints between
the foot and the ground, and λ ∈ Rc is the Lagrange
multiplier associated with the ground reaction force (GRF). An
external torque τsocket applied on the joints is due to the socket
interaction forces exerted at the mid-thigh, which connects the
prosthesis to the subject’s residual limb.

First, we derive the tracking error dynamics for the pros-
thetic leg. By taking two derivatives of y along the vector field
of (17), we have

ÿ =
d

dt

(∂y
∂q
q̇
)

= A(q)u+N(q, q̇) (18)

where the matrix A(q) =
∂y

∂q
M−1 ∈ R2×2 is the decoupling

matrix associated with the output y. Also,

N(q, q̇) =
d

dt

(∂y
∂q

)
q̇ − ∂y

∂q
M−1

{
C(q, q̇)q̇+

G(q) + E(q)Tλ− τsocket
} (19)

lumps the effect of the nonlinearities in (17). We make
the following assumption, which is common in the robotics
literature [18] and can be verified numerically:
Assumption 1: The decoupling matrix A(q) is non-singular
and positive definite.

We denote the estimates of the proportional gains in (8) by
K̂p ∈ R2 and add the dither signal

Dω(t) =

[
a sin(ωkt) 0

0 a sin(ωat)

]
(20)

to the proportional gain estimates, i.e., K̂pk and K̂pa , to obtain

Kp =

[
K̂pk + a sin(ωkt) 0

0 K̂pa + a sin(ωat)

]
. (21)

Next, we substitute the PD control law (7) into (18) to get
d

dt

(∂y
∂q
q̇
)

= -A(q)(Kpy +Kdẏ) +N(q, q̇). (22)

Defining the new state x̃ :=

[
y
ẏ

]
=

[
x̃1

x̃2

]
∈ R4, the tracking

error dynamics can be written as
˙̃x = Ã(x̃, K̂p)x̃+ Ñ(q, q̇) (23)

where

Ã(x̃, K̂p) =

[
02×2 I2×2

−A(q)(K̂p +Dω(t)) −A(q)Kd

]
Ñ(q, q̇) =

[
02×1

N(q, q̇)

]
. (24)

To simplify the analysis, we neglect the HPF and the LPF
dynamics in the ESC loop and consider a single integrator
ESC dynamics as in [30]. The ESC dynamics for the estimate
of proportional gain Kpi for the ith joint can be written as

˙̂
Kpi = kaJ i(x̃, K̂pi + a sin(ωit)) sin(ωit). (25)

Let K∗pi denote the optimum proportional gain for the ith joint.
Denoting the estimation error of Kpi by K̃pi = K̂pi − K∗pi ,
the augmented closed-loop dynamical equations for the error
dynamics are
˙̃x = Ã(x̃, K̃p)x̃+ Ñ(q, q̇) (26)
˙̃
Kpi = kaJ i(x̃, K̃pi+K

∗
pi+a sin(ωit)) sin(ωit), for i ∈ {k, a}

(27)

Remark 3: We do not tune the damping gains Kd by ESC
because once the fast tracking error dynamics settle down,
the tuning of Kd will not effect the quasi-steady-state value
of the objective function. The following result uses singular
perturbation analysis to show that the quasi-steady-state of
the objective function is independent of the damping gains
Kd.
Proposition 1: Consider the prosthesis tracking error dy-
namics in (18) along with the ESC update laws in (25).
Neglecting the filter dynamics1 used in the amplitude detector,
the objective function (16) can be written as

J i = wierr‖y‖2 + widcmf

( 1

Kpi − K̄pi

)2

(28)

In quasi-steady-state, the objective function for the ith joint
(28) is independent of Kdi , where wierr and widcmf = 1−wierr
are the weights on the error objective function and subject’s
discomfort objective function, respectively. In particular, the

1To simplify the analysis, it is a common practice to remove the filters used
in the amplitude detector (see [29] for details).
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quasi-steady-state value of the objective function in (28) is
given by

J iqs = wierr · ‖(K̂pi + a sin(ωit))
−1A(q)−1N(q, q̇)‖2+

widcmf ·
1

(K̂pi + a sin(ωit)− K̄pi)
2
. (29)

Proof. The stability of the error dynamics in (26)-(27) is
analyzed by averaging and singular perturbation method [37].
To perform the singular perturbation analysis, we bring the
closed-loop dynamics in (26)-(27) to a standard singular
perturbation form. We perform the change of coordinates

z = x̃− x̃∗ (30)

where x̃∗ is the solution2 to

Ã(x̃∗, K̃p)x̃
∗ + Ñ(q, q̇) = 0. (31)

Expressing the error dynamics given by (26) in terms of the
new coordinates in (30), we get

ż = Ã(z + x̃∗, K̃p)(z + x̃∗) + Ñ(q, q̇) (32)

= Ã(z + x̃∗, K̃p)z + Ñ(q, q̇) + Ã(z + x̃∗, K̃p)x̃
∗.

In the new coordinates (z, K̃p), the origin (z, K̃p) = (0, 0) is
an equilibrium point because

ż = Ã(x̃∗, 0) z︸︷︷︸
=0

+ Ñ(q, q̇) + Ã(x̃∗, 0)x̃∗︸ ︷︷ ︸
=0

= 0. (33)

The overall error dynamics in the new coordinates are

Σ′ :=

{
ż = Ã(z + x̃∗, K̃p)z + Ñ(q, q̇) + Ã(z + x̃∗, K̃p)x̃

∗

˙̃
Kpi = kaJ i(z+x̃∗, K̃pi+K

∗
pi+a sin(ωit)) sin(ωit).

(34)
We define a slow time scale τ := ωit and let k := ωiδK.
Expressing (34) in the new time scale given by τ , we get

ωi
dz

dτ
= Ã(z + x̃∗, K̃p)z + Ñ(q, q̇) + Ã(z + x̃∗, K̃p)x̃

∗

dK̃pi

dτ
= δKaJ i(z + x̃∗, K̃pi +K∗pi + a sin τ) sin τ. (35)

According to the singular perturbation theory, we first need
to find the quasi-steady-state value of z = [z1 z2]T in (35).
Accordingly, we set ωi = 0, corresponding to instantaneous
changes of the fast dynamics, and solve the resulting algebraic
equations:

Ã(z + x̃∗, K̃p)z + Ñ(q, q̇) + Ã(z + x̃∗, K̃p)x̃
∗ = 0. (36)

Substituting Ã(z+ x̃∗, K̃p) and Ñ(q, q̇) from (24) in (36), we
have[

02×2 I2×2

−A(q)(K̃p+K∗p+Dω(τ)) −A(q)Kd

] [
z1

z2

]
+

[
02×1

N(q, q̇)

]
(37)

+

[
02×2 I2×2

−A(q)(K̃p+K∗p+Dω(τ)) −A(q)Kd

] [
x̃∗1
x̃∗2

]
=

[
02×1

02×1

]
.

Solving for z, we get

z2 = −x̃∗2 ; z1 = (K̃p +K∗p +Dω(τ))−1R− x̃∗1 (38)

2Since A is invertible, by implicit function theorem, a solution to (23)
exists.

where R = A(q)−1N(q, q̇). Substituting z1 and z2 in (28), the
quasi-steady-state value of the objective function J iqs is given
by

J iqs = wierr · ‖z1 + x̃∗1‖2 +
widcmf

(K̂pi + a sin(ωit)− K̄pi)
2

(39)

= wierr · ‖(K̂pi+a sin(ωit))
−1R‖2+

widcmf

(K̂pi+a sin(ωit)-K̄pi)
2

(40)

It can be seen that the quasi-steady-state value of the objective
function is independent of the damping gains Kdi .

�
Remark 4: It can be easily shown that if the objective function
had been chosen as y2 + ẏ2, the quasi-steady-state value of
the objective function Jqs would have still been independent
of Kd.

In quasi-steady-state, the fast states z settle down at the
equilibrium point z = 0, and the reduced order model is given
by

dK̃pi

dτ
= δKaJ iqs(K̃pi +K∗pi + a sin τ) sin τ. (41)

Next, we prove the stability of the reduced order model
(41) and the boundary layer model (obtained by taking the
time-derivative of (30)) of a powered prosthetic leg with a
continuous-phase controller. To proceed further, we make the
following assumption on the cost function, which was verified
in Section III-B.
Assumption 2: For every walking speed, there exists a unique
optimum proportional gain K∗pi for the ith joint, such that

J i
′

qs(K
∗
pi) = 0 , J i

′′

qs (K∗pi) > 0. (42)

Furthermore, since J(·) is a convex function, it satisfies

J i
′

qs(K̃pi +K∗pi)K̃pi > 0, ∀K̃pi 6= 0 (43)

where J i
′

qs =
∂J iqs
∂Kpi

and J i
′′

qs =
∂2J iqs
∂K2

pi

.

Proposition 2: Consider the closed loop feedback system (26)
along with the ESC update law (27) under Assumptions 1, 2.
Then there exists a small constant ω̄ > 0 such that for every
ω ∈ (0, ω̄), the origin of the reduced order model (41) and
the boundary layer model ż = Ã(x̃, K̃p)x̃− Ã(x̃∗, K̃∗p )x̃∗ are
locally asymptotically stable.
Proof. The first order Taylor series expansion of J iqs is given
by

J iqs(K̃pi+K
∗
pi+a sin τ)=J iqs(K̃pi+K

∗
pi)+J i

′

qs(K̃pi+K
∗
pi)a sin τ

(44)
Using the Taylor series expansion of J iqs in (41), we have

dK̃pi

dτ
=δKa(J iqs(K̃pi+K

∗
pi)+J i

′

qs(K̃pi+K
∗
pi)a sin τ) sin τ (45)

which is in a standard averaging form [37, Chapter 10] and
thus, averaging theory can be applied. The averaged dynamics
of (45) is

dK̃pi

dτ
=
δKa2J i

′

qs(K̃pi +K∗pi)

2
. (46)
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In order to satisfy kJ i
′′

qs < 0, a negative integrator gain
is chosen, i.e., K < 0. Taking the derivative of Lyapunov
function V = 1

2K̃
2
pi with respect to τ , we get

dV

dτ
=
δKa2J i

′

qs(K̃pi +K∗pi)K̃pi

2
< 0 (47)

due to Assumption 2. This proves that the reduced order
system is locally asymptotically stable.

Now we perform a boundary layer model analysis. Taking
the time derivative of (30), we get

ż = ˙̃x− ˙̃x∗ = Ã(x̃, K̃p)x̃+ Ñ(q, q̇)

= Ã(x̃, K̃p)x̃− Ã(x̃∗, K̃p)x̃
∗ (48)

where Ñ(q, q̇) = −Ã(x̃∗, K̃p)x̃
∗ from (31). Equation (48) can

be written in terms of z as

ż = Ã(z + x̃∗, K̃p)z + [Ã(z + x̃∗, K̃p)− Ã(x̃∗, K̃p)]x̃
∗. (49)

The first order Taylor series expansion of the right hand side
of (49) about z = 0 is

ż =
( d
dz
Ã(z + x̃∗, K̃p)z

∣∣∣∣
z=0

)
z +

[
Ã(x̃∗, K̃p) +

d

dz
Ã(z + x̃∗, K̃p)z

∣∣∣∣
z=0

− Ã(x̃∗, K̃p)
]
x̃∗ (50)

which can be shown to be

ż =
( d
dz
Ã(z + x̃∗, K̃p)z

∣∣∣∣
z=0

)
z = Ã(x̃∗, K̃p)z. (51)

Since A(q) is positive definite (from Assumption 1),
Ã(x̃∗, K̃p) is negative definite, proving the boundary layer
model to be locally asymptotically stable. Using Theorem 11.1
in [37] concludes the proof. �

IV. EXPERIMENTAL VALIDATION

In this section, we present the benchtop and walking ex-
perimental results to demonstrate the effectiveness of ESC for
simultaneously tuning the proportional gains Kpi for both of
the prosthetic leg joints across different walking speeds.

A. Benchtop ESC Experiments

The tracking error profile in walking experiments can vary
depending on human factors such as varying step length,
muscle fatigue, foot scuffing, amongst others. Therefore, we
performed benchtop experiments, which provides a controlled
means of demonstrating the effectiveness of ESC adaptation
results by eliminating the human factors. Since there were
no external disturbances affecting the tracking error profile in
the benchtop mode, the convergence of Kpi could be clearly
noticed. A supplemental video of one of the benchtop tests is
available for download.

1) Different initial conditions and convex weights: Four
benchtop tests were performed at a particular walking speed,
illustrating simultaneous Kpi adaptation. The prosthetic leg
joints were commanded time-based knee and ankle trajectories
with a period of 2 seconds. In the first two experiments, the
weights on the objective functions were fixed and the initial
conditions were varied to experimentally verify the convexity
of the cost function. Figs. 7a, 7b show the proportional gain
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Fig. 7: Simultaneous ESC adaptation of Kpk and Kpa , starting from
different initial conditions and different convex combinations of ob-
jective functions. The convergence to the same optimum K∗

pi , starting
from different initial Kpi experimentally verified the convexity of the
cost function, developed in Section III-B. Also, it can be seen that
when J i

err was weighed higher, Kpi converged to a higher value.

adaptation results of the knee and the ankle joints, respectively,
with wkerr = 0.3, waerr = 0.5. In the first experiment (see the
blue graphs in Figs. 7a, 7b), the initial conditions were set
to Kpk(0) = 2.3, Kpa(0) = 7. In the second experiment
(see the red graphs of Figs. 7a, 7b), the weights on the
objective functions were unaltered, but the initial conditions
were changed to Kpk(0) = 3.8 and Kpa(0) = 13. It can
be noticed from Figs. 7a, 7b that the proportional gains
converged to the same values, which experimentally verified
the convexity of the objective function.

Next for the same set of initial conditions, another two
experiments were done with higher weights on the objective
function. Figs. 7c, 7d depict the adaptation results of the
proportional gains for the knee and the ankle joint, respectively
with wkerr = 0.5, waerr = 0.9. These proportional gains corre-
spond to higher weights on the objective functions compared
to Figs. 7a, 7b. It can be noticed that if the objective function
J ierr,ss was weighed higher than J idcmf , Kpi converges closer
to K̄pi . It is remarked that the rate of convergence for a
particular joint is not affected by the weights on the objective
functions.

Further results for the case presented in Figs. 7a, 7b are
shown in Fig. 8. Fig. 8 shows the plot of the objective
functions, J ierr,ss, J

i
dcmf , J icvx,ss and the proportional gain

Kpi for the knee and the ankle joints. It can be seen from
Figs. 8a, 8c that when Kpk was initialized closer to K̄pk ,
Jkdcmf was initially high. When the error objective function
was weighed less, i.e., wkerr = 0.3, ESC gradually reduced
Kpk to minimize Jkdcmf . Similarly, for the ankle joint, when
waerr = 0.5 and Kpa(0) = 7 (far from K̄pa ), ESC increased
Kpa , thereby reducing Jaerr,ss. This can be noticed for the
ankle in Figs. 8b and 8d.

2) Trajectories with different rates of change: For fixed
initial conditions of Kpi and weights wierr, ESC was run
to adapt Kpi for different speeds. In particular, the initial
condition of Kpk and Kpa were set to 2.3 and 7, respectively.
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Fig. 8: Benchtop experimental results for wk
err = 0.3, wa

err = 0.5: (a) Plot of knee objective functions, Jk
err,ss and Jk

dcmf ; (b) Plot of ankle
objective functions, Ja

err,ss and Ja
dcmf ; (c) Double plot of Kpk and Jk

cvx,ss; (d) Double plot of Kpa and Ja
cvx,ss. As it can be seen from

Figs. 8a, 8c, when initial Kpk is high, i.e., Kpk = 3.8 and Jk
dcmf is weighed higher, ESC reduces Kpk to minimize the user’s discomfort

objective function Jk
dcmf . For the ankle joint, when the initial Kpa is low, i.e., Kpa = 7 and Ja

err,ss is weighed higher, ESC increases Kpa

to minimize the tracking error objective function Ja
err,ss.
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Fig. 9: Benchtop experimental results showing simultaneous ESC
adaptation of Kpk and Kpa , for different speeds. It can be seen that
Kpi converges to a higher value for faster trajectories.

Two speeds of 0.5 Hz and 0.65 Hz were tested. From Fig. 6b
in Section III-B, it is clear that for a given convex combination
of weights on the objective functions, J ierr,ss and J idcmf , the
objective function J icvx,ss has different optima K∗pi at different
walking speeds. Fig. 9 shows simultaneous ESC adaptation of
Kpi at different speeds. It can be noticed that Kpi for both of
the joints converge to a higher value at faster speeds, which
is in agreement with Fig. 6b.

B. Walking ESC Experiments

The experiment protocol used for performing walking ESC
experiments is described in Appendix B. The gait tiles for slow
and fast walking ESC experiments are shown in Fig. 10. Fig.
11 shows the online adaptation of Kpi for different walking
speeds. For all of the walking experiments, wkerr = 0.5 and
waerr = 0.7 were chosen. For slow walking, Kpk and Kpa

were initialized at 3 and 7, respectively (see Fig. 11a, 11b).
On starting ESC at 0.89 m/s walking speed, it was noted
that Kpi gradually starts increasing. At t = 50s, when the
walking speed is changed to 1.34 m/s, the adaptation rate
changes and Kpi starts increasing, while the ESC algorithm
starts seeking for a new optimum, which is higher for faster
walking. The trend of Kpi adaptation is exactly in accordance
with our explanation in Section III-B. In order to verify
that ESC automatically adapts to changes in walking speed,
we performed another two trials by starting from fast speed
and transitioned to slow speed after 50 seconds. For these
trials, since the optimum for the fast walking speed is higher,
Kpk and Kpa were initialized at 3.5 and 10, respectively.
After the transient phase of ESC filters (see Figs. 11c, 11d),
Kpi starts increasing at faster walking speeds. At t = 50s,

when the treadmill speed was changed to 0.89 m/s, Kpi

started decreasing. A supplemental video of the experiment
is available for download.

Fig. 12 demonstrates a double plot of Kpi and J icvx,ss for
slow-to-fast and fast-to-slow walking experiments. It can be
seen that when the walking speed changes from slow-to-fast,
J icvx,ss increases, thereby increasing Kpi (see Figs. 12a, 12b).
Similarly, when the walking speed changes from fast-to-slow,
J icvx,ss decreases, thereby decreasing Kpi (see Figs. 12c, 12d).
Although the change in the magnitude of Jacvx,ss is hard to
notice in Fig. 12d, an overall downward trend can be observed.

Remark 5: A proper choice of ESC parameters is critical
for stable ESC adaptation across operating conditions such as
various walking speeds. We explain the procedure for selecting
proper ESC parameters in Appendix A. The ESC parameter
selection procedure, which is independent of the operating
conditions, should be performed only once by the technician.

V. DISCUSSION

In this paper, we developed a convex ESC cost function that
incorporated the prosthetic leg tracking error performance and
the user’s comfort level. In order to test the performance of
ESC for simultaneously adapting the proportional gains Kpi

of the knee and the ankle joints, benchtop experiments were
performed in order to validate the applicability of the proposed
algorithm in Section III. The experimental results in Section
IV were in agreement with our analysis proposed in Section
III-B. In the following, we discuss the advantages and the
limitations of this work.

A. Advantages of the Proposed Approach

The main challenge in automating the tuning process of
control parameters of multiple joints is due to the interde-
pendence of one joint’s performance on the other. One of
the main advantages of this work is that our ESC-based
automatic tuning algorithm is capable of simultaneously tuning
the proportional gains Kpi for both of the prosthetic leg joints.
This is a result of the structure of ESC, whose adaptation
law for the ith joint consists of filtering and demodulating
operations. As a result, the ESC adaptation law isolates the
effect of the other joint and computes a correlation between
the ith joint’s performance and its proportional gain Kpi .
Depending on the user’s preference on either the tracking
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Fig. 10: Snapshots of walking experiments. Figs. 10a-10e show the photos of fast walking experiments at 1.34 m/s, and Figs. 10f-10j show
the photos of slow walking experiments at 0.89 m/s for one gait cycle. A supplemental video of the experiment is available for download.

performance or the comfort factor (based on the selection of
convex weights, i.e., wierr, w

i
dcmf ), the proportional gains of

the powered prosthetic leg during walking are automatically
tuned by the ESC scheme. This method would eliminate
the need for manual tuning of the proportional gains, which
currently requires multiple iterations to achieve a balance
between the prosthetic leg tracking error performance and the
user’s comfort.

The advantage of the continuous-phase controllers over
impedance-based controllers is that the same controller can
be used across different walking speeds [20], [21], at the
expense of slight degradation in the tracking performance and
the user’s comfort level. We augment the continuous-phase
controllers with our real-time ESC-based tuning algorithm
that is capable of automatically changing the proportional
gains Kpi at different walking speeds. As compared to [6],
[7], where the adaptation was shown for a particular walking
speed, we demonstrated the adaptation of the control parameter
Kpi at different walking speeds.

Our ESC adaptation algorithm is suitably fast to react to
changes in the walking speed, which is particularly attributed
to the choice of the objective function used in this paper. The
tracking performance of the prosthesis can be affected due
to a number of factors such as walking speed and muscle
fatigue, amongst others. The benchtop adaptation results in
Fig. 8, 9 show that ESC takes at most 3 minutes to adapt
to different walking conditions. In the walking experiments,
it can be seen from Fig. 12 that the objective function
changes instantly with the change in walking speed. The rapid
change in the objective function enables ESC to react to the
changing walking conditions and tune the proportional gains
Kpi accordingly. On the other hand, using a metabolic cost
as an objective function leads to a very slow optimization

that typically requires an hour to find an optimum [9]–[11].
Clearly, such a slow optimization process might not applicable
for adapting to real-time changes in behavior or environment.

Our ESC-based adaptation algorithm does not use any off-
board sensors, such as oxygen masks, in contrast to [9]–[11].
Also, we circumvented the need for expensive load cells for
measuring the user’s comfort by incorporating a comfort factor
in the developed convex ESC cost function (see equations
(15), (16)). These advantageous features of our proposed ESC
algorithm makes the current approach applicable to scenarios
outside the restricted lab space and inexpensive to implement.

B. Limitations

In this work, we did not investigate the effect of changing
the proportional gains on the clinical aspects of amputee
gait. Also, there is no guarantee that our optimal solution is
metabolically efficient. Further work needs to be done in order
to determine a proper objective function that better depicts the
biomechanical aspects of human walking without requiring
offboard sensors.

Finally, due to the time-varying nature of the adapta-
tion scheme, ESC dynamics were initiated after the subject
achieved steady-state walking, and was stopped before the
subject stopped walking. This is because when the subject
stopped walking, the output of the amplitude detector, which
was responsible for computing the error objective function,
became zero. In such a case, ESC stopped increasing the gains
as the error objective function was always zero. However, since
the proportional gains were still being perturbed by a time-
based dither signal, ESC kept on minimizing the discomfort
objective function (15), thereby saturating the proportional
gains to the lowest allowable value. Clearly, in such cases
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Fig. 11: Walking ESC experimental results showing adaptation at different speeds. The black line represents the moving average of the
mean of two trials with a window size of 10 seconds. The dashed vertical black line represents the time instant at which the treadmill speed
is changed. It can be seen from Figs. 11a, 11b that when the user transitions from slow-to-fast walking, Kpi starts increasing. Similarly, it
can be seen from Figs. 11c, 11d that when the user transitions from fast-to-slow walking, Kpi starts decreasing.
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Fig. 12: Double plot of Kpi and J i
cvx,ss with Kpi on the left y axis, shown in red and J i

cvx,ss on the right y axis, shown in blue. It can
be seen from Figs. 12a, 12b that when the user transitions from slow-to-fast walking, the convex ESC cost function J i

cvx,ss increases and
accordingly, ESC increases Kpi for minimizing J i

cvx,ss. Similarly, it can be seen from Figs. 12c, 12d that when the user transitions from
fast-to-slow walking, J i

cvx,ss reduces and accordingly, ESC reduces Kpi in order to minimize the user’s discomfort J i
dcmf .
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a time-invariant ESC, i.e., independent of time-based dither
signals, is needed to address such situations.

C. Clinical Application of ESC Based Auto-Tuning
The method proposed in this paper can be used to automate

the tuning process of the control parameters of the prosthetic
leg in a clinical setting. The selection of the ESC parameters
are specific to the hardware and not the user. Therefore, the
tuning of ESC parameters needs to be performed just once for
each unique hardware configuration (see Remark 5). In this
section, we describe the method for choosing the weights on
the objective function for a particular user.

Consider a practical situation of a technician fitting a pow-
ered prosthesis to a subject. After the prosthesis is fitted to the
subject, they would be instructed to walk at a slow speed (0.89
m/s) on the treadmill. While the subject walks, the proportional
gains would be gradually increased by a technician until
the user complains about the discomfort caused by forceful
interaction of the leg. The maximum user-permissible value of
the proportional gain for the ith joint is recorded and denoted
by K̄pi . If the user is comfortable with proportional gains
closer to K̄pi , wdcmf ≤ 0.5 should be selected. Otherwise,
wdcmf > 0.5 should be selected so that ESC tunes the
proportional gains to minimize the discomfort level of the
user. This upfront tuning process should not take more than
a minute. Once the weights on the objective functions have
been tuned for a particular user, no other manual tuning
needs to be performed. The proportional gains will then be
automatically tuned by ESC across different walking speeds,
thereby maintaining the desired preference of the user.

VI. CONCLUSION

This paper developed and implemented an ESC-based au-
tomatic tuning scheme for a continuous phase-based powered
knee-ankle prosthetic control system. A convex objective
function was built from an extensive set of fixed-gain benchtop
and walking experiments, carried out at different walking
speeds. A theoretical analysis was presented, which shows
that the quasi-steady-state value of the objective function
for continuous-phase controlled powered prosthetic legs is
independent of the damping gains Kd. The advantage of the
proposed method is that it relies only on the onboard sensors
and does not require the knowledge of the user or prosthetic
leg. The benchtop and walking experiments carried out at
different speeds illustrate the strength of ESC for simultaneous
adaptation of the proportional gains. Future work aims toward
developing a time-invariant framework for ESC by using
periodic states of the prosthetic leg as the dither signal instead
of an exogenous time-based signal.

APPENDIX

A. Selection of ESC Parameters
According to the stability proof of ESC for general non-

linear dynamical systems in [23], the ESC parameters, i.e.,
a, k, ω, ωh, ωl must be chosen to be sufficiently small and
depends on the closed-loop dynamics of the system. The
choice of ESC parameters is carried according to what follows.

1) Choice of ESC dither amplitude and ESC integrator
gain: The selection of ESC parameters, a, k, depends on
the sensitivity of the system to the changes in the tunable
parameters [23]. The sensitivity of the prosthetic leg joints
to the changes in the proportional gains Kpi can be observed
from fixed-gain experiment results, explained in Section III-B.
The sensitivity of the ith joint to changes in Kpi at a particular
walking speed, denoted by SiKp

can be approximated by

SiKp
≈ ȳmaxi − ȳmini

Kmax
pi −Kmin

pi

(52)

where ȳmaxi , ȳmini are the maximum and minimum average
filtered tracking error observed in fixed-gain experiments at
a particular speed. In particular, for fast walking fixed-gain
experiment, the knee and the ankle joints have sensitivities

SkKp
≈ 12.26-6.17

5-1.8
= 1.9 ;SaKp

≈ 0.27-0.19

14-8
= 0.013. (53)

From (53), it can be noticed that the knee joint tracking error
is more sensitive to the changes in Kpk , as compared to the
ankle. Since the ESC update law in (12) updates Kpi based
on the sensitivity of the joint tracking error with respect to
changes in Kpi [23], a, k were chosen to be smaller for the
knee joint compared to the ankle. On the other hand, due to
low sensitivity of the ankle tracking error to Kpa , and shallow
gradient of the objective function with respect to Kpa , the
ankle joint ESC parameters were chosen to be relatively high.
The ESC parameters for both the joints are given in Table I.

Remark 6: In order to prevent frequent oscillations between
the forceful and the compliant interaction of the prosthesis
with the user, small ESC parameters were selected for the
knee joint.

2) Choice of ESC dither frequency, HPF cut-off fre-
quency, and LPF cut-off frequency: In a perturbation-based
ESC, the closed loop system dynamics in (11) must be faster
than the rate of change of controller parameters. In a pow-
ered prosthetic leg, we are concerned with position control.
Therefore, we must ensure that the error dynamics for the ith

joint is much faster with respect to changes in Kpi . Once the
speed of the error dynamics is determined, the dither frequency
must be selected to be lower than the speed of error dynamics
so as to maintain a time scale separation between the error
dynamics and the ESC dynamics. A procedure similar to [38]
was followed to measure the speed of the error dynamics with
respect to Kpi . To measure the speed of the error dynamics
for the ith joint, step experiments were performed separately
for each joint. For each joint, a step signal of 5 degrees
was commanded with Kpi set to the lowest allowable value.
Once the steady-state error was achieved, Kpi was given a
step change to its highest allowable value, and the settling
time was noted. Fig. 13 shows the tracking error plot for a
step change in Kpk and Kpa . The settling time for the knee
joint tracking error, yk, and the ankle joint tracking error,
ya, are 0.6 and 0.2 seconds, respectively. Thus, the speed of
the knee and the ankle error dynamics are 1/0.6 = 1.66 Hz
and 1/0.2 = 5 Hz, respectively. Since both of the knee and
the ankle joints have independent ESC loops, the same dither
frequency can be used for both of the joints. From the step
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Fig. 13: Error response of the prosthetic leg joints to a step change
of Kpi .

TABLE I: ESC Parameters for Different Joints

ESC Parameters Knee Ankle

a 0.2 1

f = ω/2π 0.2 Hz 0.2 Hz

k -5 -60

fh = ωh/2π 0.1 Hz 0.1 Hz

fl = ωl/2π 0.05 Hz 0.05 Hz

experiments, we know that ω for the knee and the ankle joint
should be selected to be much smaller than 1.66 Hz and 5 Hz,
respectively. Furthermore, ω should also be selected smaller
than the limit cycle frequency. In human walking, the subject’s
cadence represents the walking limit cycle frequency. The
cadence, expressed in steps/minute, is related to the walking
speed (m/s) and stride length (m) according to [33]

Walking speed =
Stride Length× Cadence

120
. (54)

With fixed walking speed and constant step lengths, the
cadence can be determined. Due to the variations of the stride
length from step to step, the cadence was determined in the
following manner. First, the subject was instructed to walk
on the treadmill at a particular speed with fixed Kpi . After 20
seconds, when the person achieved a steady-state gait, the data
logging was started. A FFT of the actual trajectory was then
plotted. The FFT plots indicate that walking at 0.89 and 1.34
m/s corresponded to walking at 0.45 and 0.65 Hz, respectively.
Therefore, ω was chosen as 0.2 Hz, which was slower than the
plant dynamics and the limit cycle frequency. Since the filters
are the slowest components of ESC, their cut-off frequencies
should be selected such that ωl, ωh � ω. A first order HPF and
LPF with cut-off frequencies 0.1 and 0.05 Hz were chosen,
respectively. Table I summarizes the ESC parameters used in
the experiments for all the walking speeds.

B. Walking Experiment Protocol

In order to demonstrate simultaneous online adaptation of
Kpi to different walking speeds, two scenarios were consid-
ered. In both of the scenarios, an able-bodied subject was
instructed to walk on the treadmill at a desired speed, until he
achieved steady-state walking gait (walking with constant step
lengths). Once the subject attained a steady-state walking gait,
ESC was initiated for adapting Kpi . The speed of the treadmill
was changed manually around 50 seconds after the start of
ESC. In the first scenario, the subject was instructed to start

walking at 0.89 m/s and the treadmill speed was changed to
1.34 m/s after 50 seconds. In the second scenario, the subject
was instructed to start walking at 1.34 m/s and the treadmill
speed was changed to 0.89 m/s after 50 seconds. Since the
tracking error varied, we performed two trials of the same
scenario in order to illustrate the trend in adapting Kpi .
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