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Effect of nanorope waviness on the effective moduli of nanotube sheets
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Using a micromechanics approach, we recently investigated the theoretical limits on achievable
moduli in nanotube mats by stiffening of bonds. However, the waviness intrinsic to many
manufacturing processes also clearly plays an important role in stiffness of these materials. To study
the effect of waviness on mechanical properties, we modeled fiber segments as sinusoids, generated
networks comprised of these fibers, and performed simulations of deformations of the networks. In
contradiction of classical work by Kallmes and Corte@Tappi J.43, 737 ~1960!#, we found the
number of fiber crossings in these networks to be independent of fiber waviness, leading to
identification of the number of fiber crossings as a necessary and sufficient parameter to specify
network geometry, for either wavy or straight fibers. Our mechanical modeling results suggest that
reducing the waviness of nanotube ropes would significantly improve Young’s moduli in these
materials. However, reduction of waviness would not produce the improvements achievable with
higher bond density; for random sheets, assuring connections among all intersecting ropes appears
to be the most direct route toward improving the overall sheet properties. There remains a persistent
discrepancy between statistically predicted bond densities and physical bond densities, based on
moduli of these materials. ©2004 American Institute of Physics.@DOI: 10.1063/1.1687989#
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I. INTRODUCTION

Improvements in nanotube~NT! sheet properties hav
been sought through stiffening of inter-rope/intertu
connections1–3 and alignment of fibers and ropes.4–7 Using a
micromechanics approach, we have recently investigated
theoretical limits on achievable moduli by stiffening
bonds.1 However, the waviness intrinsic to many manufa
turing processes also clearly plays an important role in m
terial stiffness. For example, Fisheret al.8 studied NT curva-
ture in NT reinforced polymer composites, and demonstra
that effective moduli are significantly reduced with increas
waviness of embedded NTs. Here, we further develop a g
eral methodology for linking NT, nanorope, and nanotu
mat properties.

Single-walled carbon nanotubes are synthesized in cl
packed bundles or ropes due to van der Waals forces.9,10 NT
ropes have very low bending rigidity,10 and thus readily form
into porous composites of entangled, randomly orien
ropes and nanoscale impurities. Some of these impurities
be removed by acid treatment; dispersion of the NTs is co
monly achieved using a surfactant. Filtration of the result
suspension produces a porous NT mat, or ‘‘Bucky paper11

comprised of nanoropes with intrinsic curvature.
Previously, in investigating the effect of bond properti

on modulus, we modeled the NT ropes as straight bea1

We emphasize that our assumption of rigid bonds at fi
crossings is clearly an idealization. Although several

a!Author to whom correspondence should be addressed; electronic
amsastry@umich.edu
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proaches have been devised recently to create higher d
ties of bonds in NT sheets,1 our method does offer a mean
of determining the relative effects of improving bond dens
with fiber straightening on sheet properties. We thus set
the following three objectives:

~1! to develop a model for single NT rope curvature enco
passing realistic arrangements of NTs in NT mats,

~2! to determine the effect of curvature on bond density a
other geometric descriptors of NT mats, and

~3! to determine the effect of curvature on segment
sponse, and overall mat properties.

We use both two-beam and network assemblies to study
effects of curvature, and also comment on the relative imp
tance of bonds, segment curvatures, and other geometric
tures in NT mat properties.

II. MODEL DEVELOPMENT

Scanning electron microscope~SEM! images of NT
sheets reveal some straightening of the ropes along
edges.12 Thus, images analyzed here were taken in the s
face planes of the sheets, wherein various curvatures of ro
and segments were observed@Fig. 1~a!#. Several nanoropes
in each image were selected for analysis, to provide inpu
our geometric model~Fig. 2!. SEM images of each of the
two types of sheets considered@comprised of NTs manufac
tured using laser ablation and high pressure carbon mon
ide ~HiPCO! synthesis, respectively, and provided by t
NanoTech Institute of the University of Texas at Dallas# were
analyzed; five surface, sinusoidal ropes were selected f
each image.
il:
7 © 2004 American Institute of Physics
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PeriodT and amplitudeA were first determined for eac
nanorope, represented by the sinusoid

y5A sin~vx1a!. ~1!

Period T can be written as 2p/v, where v is the angular
frequency. The running lengthL of a fiber fromx50 to x
5a, is given by

L5E
0

a
A11A2v2 cos2~vx1a!dx. ~2!

The coordinates of four points on each fiber, along w
the orientation angleu ~as shown in Fig. 2!, were recorded.13

These were rewritten in terms ofx8 andy8, where thex8–y8
coordinate system is rotated about thex–y coordinate sys-
tem by u. After translation and rotation, the sinusoid repr
senting each nanorope has the form

y85y081A sin~vx81a!. ~3!

FIG. 1. SEM images of NT sheets showing~a! straight and sinusoidal seg
ments and~b! closed loops.
Downloaded 26 Apr 2004 to 141.212.136.84. Redistribution subject to AI
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The four unknown parametersy08 , A, v, and a for each
nanorope were determined for each sinusoidal curve u
the four randomly selected coordinate points measu
@(xi8 ,yt8),i 51,2,3,4# via simultaneous solution of the fol
lowing four equations (i 51,2,3,4):

yi85y081A sin~vxi81a!; ~4!

reduction of these two nonlinear equations via elimination
y0 andA, as

sin~vx181a!2sin~vx281a!

sin~vx181a!2sin~vx381a!
5

y182y28

y182y38
~5!

and

sin~vx181a!2sin~vx281a!

sin~vx181a!2sin~vx481a!
5

y182y28

y182y48
, ~6!

allowed calculation ofA as

A5
y182y28

sin~vx181a!2sin~vx281a!
. ~7!

Amplitude A and angular frequencyv were thus found by
simultaneous, numerical solution of Eqs.~5! and ~6!; we
usedMATLAB to obtain the values reported here. The peri

FIG. 2. Parameters for~a! fiber geometry and~b! network generation.
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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T is simply 2p/v. Values ofT andA for the ropes sampled
are compiled in Table I. Ropes presenting as mildly curv
circular arcs were modeled as segments of a sinusoid ha
largeT/A.

III. EFFECT OF FIBER WAVINESS ON NETWORK
GEOMETRY

We term the fiber length between crossings as a fi
segment. We note that we use the term ‘‘crossing’’ to indic
any fiber intersection in the geometry model, and ‘‘bond’’
indicate a fiber intersection in the micromechanical mod
use of the latter term indicates some finite torsional prop
ties assigned to a crossing. The network geometry is sp
fied by the total number of fiber crossings or intersectio
for a particular fiber geometry. Sinusoidal fibers can
thought of as infinite, one-dimensional~1D! objects with pre-
scribedv ~or, alternatively, periodT!. Both the mean numbe
of crossings per fiber, and the mean distance between
cessive intersections along a fiber~i.e., mean segment length!
can be calculated from this idealization, given the total nu
ber of fiber crossings.

In our simulations, random networks of sinusoidal fibe
were generated by depositingNf identical fibers of running
lengthL, phase anglea, centerline inclinationu, and ampli-
tudeA, in a unit cell, as shown in Fig. 2~b!. End pointsxi and
yi , and orientationsu i were randomly generated, and pe
odic boundary conditions were imposed on the arrays.
study the effect of increased waviness, period lengthsT were
systematically decreased, holding all other geometric par
eters constant. Figure 3 shows sample random network
100 fibers, each comprised of fibers with amplitudeA
50.05, phase anglea50, running lengthL51, andv54p,
8p, 12p, and 0, respectively.

Kallmes and Corte14 postulated that the number of cros
ings Nc for random networks of 1D fibers was related
mean fiber lengthl̄ and mean fiber curlt̄ by

TABLE I. Data for sinusoidal ropes in~a! HiPCO ~annealed! and ~b! laser-
ablated~unannealed! NT sheet samples measured from SEM images.
both samples the mean rope diameter was 10 nm. Samples provided b
NanoTech Institute at the University of Texas at Dallas.

period,T (nm) amplitude,A (nm) T/A

~a!

396 26 15.3
396 35 11.3
863 69 12.5

1001 258 3.9
2505 724 3.5

Mean 9.3

period,T (nm) amplitude,A (nm) T/A

~b!

1014 84 12.0
1163 158 7.4
1000 49 20.3
589 53 11.1

Mean 12.7
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Nc5
~Nf l̄!2

Apt̄2
, ~8!

where curlt is defined as the ratio of the actual~running!
fiber lengthl to the straight distance between its ends. O
own derivation contradicts this finding, as described in
following paragraphs.

To allow correlation between this model and our ow
using sinusoidal curves, we first define the straight dista
between the fiber ends asd, wherel andd are given by

l5E
0

a
A11A2v2 cos2~vx1a!dx, ~9!

d5Aa21A2@sin~va1a!2sina#2. ~10!

Variable a is the x coordinate of the fiber end point@i.e.,
value ofx for j5L, as shown in Fig. 2~a!#. The fiber curl is
given byt5l/d, or

t5
*0

aA11A2v2 cos2~vx1a!dx

Aa21A2@sin~va1a!2sina#2
. ~11!

This relation allows conversion fromv to t, given a fiber
running lengthl; in the present study,l was taken as unity.

Our expression for the relationship betweenv and num-
ber of crossings in a system is briefly described as follo
we provide a more detailed discussion, and also discus
of percolative properties of these arrangements, in ano
paper.15 We initially consider two fibers of lengthL f , arbi-
trary shape, and random orientation, in an areaA @Fig. 4~a!#.
Each fiber is divided inton straight segments. The probabi

r
the

FIG. 3. Networks of 100 fibers ofL f51, A50.05,a50, and~a! v54p ~b!
v58p ~c! v512p ~d! v50.
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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ity that the ith segment of one fiber will intersect thejth
segment of the other is shown as the shaded area divide
the total areaA shown in Fig. 4~b!, given by

P5
l i l j

A
usinuu, ~12!

where l i and l j are the segment lengths, andu is the angle
between the segments. For fibers of random orientation,
probability of intersection can be expressed as

P5
1

p E
0

p l i l j

A
usinuudu5

2l i l j

pA
. ~13!

For a network ofNf fibers, the total number of fiber seg
ments is then simply the product ofn and Nf . WhenNf is
large, the number of fiber crossingsNc can be approximated
by

Nc'
1

2 (
i 51

nxNf

(
j 51

n* Nf 2l i l j

pA
5

L total
2

pA
, ~14!

whereL total is the total length of fibers in the network. For
network ofNf fibers of lengthL f , the number of crossings i
thus

Nc'
~NfL f !

2

pA
. ~15!

A plot of the number of fiber crossings versus fiber geome
or waviness is shown in Fig. 5, showing the independenc
number of fiber crossings and waviness, and our anal
solution for this parameter.

IV. EFFECT OF FIBER CURVATURE ON RESPONSE

A. Two-beam model

We began by modeling two-beam assemblies of cur
segments, as shown in Fig. 6. A sinusoidal geometry@Eq.
~1!# with phase anglea50 and constant amplitudeA
50.05, was assumed for the curved segments. Angular
quencyv was varied to maintain a unit running length in a
assemblies~i.e., in all assemblies,L151, whereL1 is the
running length of AB and BC!. Six cases were considere
v50 ~i.e., the straight beam case!, v5p, 2p, 4p, 6p, and
8p. For each assembly, AB and BC were rigidly connected
B. End A was pinned and end C was displaced byX, in thex

FIG. 4. Two wavy fibers of lengthL f randomly placed in cell of areaA,
shown in~a!, and the probability that segments shown intersect, shown
the shaded region divided by total areaA in ~b!.
Downloaded 26 Apr 2004 to 141.212.136.84. Redistribution subject to AI
by

he

y
of
ic

d

e-

t

direction. Finite-element analyses were performed on th
assemblies to determine the resultant forceQc at C in thex
direction. For each simulation, each curved segment was
vided into sixteen elements per period, and each element
modeled as a straight, two-node beam. Analyses were
formed for 0<g<p, where g is the intersection angle. In
each case, the normalized effective modulus was calcul
as

Eeff

E
5

QcL2

pr 2XE
, ~16!

whereL2 is the distance AC andr is the beam radius.
Figure 7 shows the results of the two-beam fini

element analyses. Forg,11p/12, the effective modulus o
the two-beam assemblies increased with increasing fi

s

FIG. 5. Predicted number of fibers vs number of fiber crossings per
area, using our approach and earlier work by Kallmes and Corte~see
Ref. 14!.

FIG. 6. Examples of two-beam assemblies used in finite-element anal
including ~a! a straight beam assembly showing reaction forces, and sev
two-beam constructs, with angular frequenciesv of ~b! p, ~c! 2p, and
~d! 4p.
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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waviness. Beyond this value ofg, the straight beam assem
bly was the most rigid assembly. Forg5p, the normalized
effective modulus of the straight beam case is, of cou
unity, while the corresponding values of effective modu
for the other cases considered range from 0.0002 forv5p to
0.000 14 forv58p.

B. Network model

In earlier work,1 we had shown that a random fibrou
network of coverage or area fractionH could be adequately
modeled using a two-dimensional~2D! network of Nf

straight beam elements of diameterd randomly distributed in
a unit cell with periodic boundary conditions enforced, pr
vided that

Nfd52 log~12H !. ~17!

Briefly, the elastic response of a random fibrous netw
is largely determined by the total number of fiber crossin
mean number of crossings per fiber, and the mean dista
between successive crossing along a fiber, or segm
length.14 By equating the mean segment aspect ratio of
real and simulated networks via Eq.~17!, we are able to
model the response of real materials using 2D network si
lations. Since the number of fiber crossings~and thus the
mean segment length! is independent of fiber waviness, a
shown in Fig. 5, Eq.~17! can be applied to networks of wav
fibers as well.

Two-dimensional networks were generated by placem
of Nf fibers of diameterd, unit length, and random en
points and orientations, into a unit cell. Periodic bound
conditions were enforced for all networks. For each com
nation of beam diameter, number of fibers, and curvature,
networks were generated and analyzed. Each curved b
was divided into 50 straight segments, which were mode
as Euler–Bernoulli beam elements of solid circular cro
section. The top boundary of the unit cell was given a d
placementdy, and the resultant forceF on the top boundary
was found. The effective modulusEeff of each network was
calculated as

FIG. 7. NormalizedEeff vs intersection angle for two-beam models.
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Eeff5
F

dy"d
. ~18!

Dimensioned values ofEeff were normalized by the fibers
Young’s modulusE. Four comparisons were made, as d
scribed in the following paragraphs. In all the plots of ne
work results ~Figs. 8–11!, each data point represents th
mean normalizedEeff for the ten networks of that specifi
fiber geometry; error bars represent61s for ten realizations.

~1! A comparison ofEeff versus the ratioA/d, a quantity
determined readily from image analysis of sheets,
shown in Fig. 8. Constant diameter/fiber length rat
(d/L50.002) and constant angular frequencies~v
510p! were used. Fiber amplitude was varied (0<A
<0.04). Two hundred fibers were used in each simu
tion, giving networks of area fraction 33%@per Eq.
~17!#. This area fraction is close to the upper bou
~32%! reported for conventional unaligned NT sheets1,5

~2! A comparison ofEeff versusT/d, another parameter de
termined readily from image analysis, is shown in Fig.
Constant diameter/fiber length ratios (d/L50.002), con-
stant fiber amplitude (A50.05) and variable angular fre
quencies were used to generate the results. Again,
number of fibers used in each simulation was 200, giv
an area fraction 33% for each network.

~3! A comparison ofEeff versus area fraction is shown i
Fig. 10. Constant diameter/fiber length ratios (d/L
50.002) were used to simulate networks of a range
area fractions from 10%–50%, with the number of fibe
in each simulation calculated using Eq.~17!. Three fiber
geometries were considered: straight fibers~case 1!, and
wavy fibers having constant amplitude/diameter rat
(A/d510) and period/amplitude ratios ofT/A510 ~case
2! andT/A55 ~case 3!.

~4! A comparison ofEeff versus area fraction is shown i
Fig. 11. Constant diameter/fiber length ratios (d/L
50.005) were used to simulate networks of a range
area fractions from 10%–50%, with the number of fibe
in each simulation calculated using Eq.~17!. Three fiber
geometries were considered: straight fibers~case 1!, and

FIG. 8. NormalizedEeff vs A/d showing the effect of reducing fiber wavi
ness via reduction in amplitude. For all simulations, fiber diameter50.002,
fiber length51, number of fibers5200, andv510p.
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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wavy fibers having constant amplitude/diameter rat
(A/d510) and period/amplitude ratios ofT/A510 ~case
2! andT/A55 ~case 3!.

V. DISCUSSION

The first objective of this work was to develop a mod
for single NT rope curvature encompassing realistic arran
ments of NTs in NT mats. Our approach, using a sinusoid
represent fiber segments, allowed reasonable characteriz

FIG. 9. NormalizedEeff vs T/d showing the effect of reducing fiber wavi
ness via increasing fiber period. For all simulations, fiber diameter50.002,
fiber length51, number of fibers5200,A50.05.~Dashed line is the averag
normalizedEeff for a network of straight fibers of equal diameter.!

FIG. 10. NormalizedEeff vs area fraction for networks of straight fibe
~case 1! and sinusoidal fibers withA/d510 andT/A510 and 5~cases 2 and
3, respectively!. For all simulations, fiber length51, fiber diameter50.002.
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of the geometries observed, with a few exceptions. For
ample, some isolated areas of highly curled NTs were vis
in several images, forming closed loops on sheet surfa
@Fig. 1~b!#. These looped regions could have been mode
as connected segments of sinusoidal curves having low
ues ofT/A ~e.g., 2 or 3!. Only ropes that were clearly sinu
soidal in shape were measured. Therefore, our reported
erage values ofT/A would certainly lead to lower-than
probable moduli versus experimental materials, since
majority of the segments in our images appeared to
straight or very mild circular arcs~i.e., reported ratios are
smaller than actual averageT/A values!.

Selecting a single means of fitting a sinusoid to ima
analysis data proved less trivial than anticipated. In the la
ablation-produced sheet, numerical solutions were unreal
for one curve, because solutions of Eqs.~5! and ~6! did not
converge for nearly aligned data points~i.e., y18'y28'y38
'y48). In cases such as this, the nonlinear problem is
defined, and locations of successive peaks in these fi
must be estimated; amplitudes can be calculated from th
Based on this experience, we recommend in semi-autom
image analysis of these systems that data points be colle
at locations within single periods, avoiding alignment, in o
der to minimize the probability of divergence in solution.

Our second objective was to determine the effect of c
vature on bond density and other geometric descriptors
NT sheets. In contradiction of classical work by Kallmes a
Corte,14 we found the number of fiber crossings to be ind

FIG. 11. NormalizedEeff vs area fraction for networks of straight fiber
~case 1! and sinusoidal fibers withA/d510 andT/A510 and 5~cases 2 and
3, respectively!. For all simulations, fiber length51, fiber diameter50.001.
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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pendent of fiber waviness, leading to the identification of
number of fiber crossings as a necessary and sufficient
rameter to specifying network geometry, for either wavy
straight fibers. The immediate consequence of this is the
dependence of both the number of crossings per fiber and
mean fiber segment length from fiber waviness.

Our third objective was to determine the effect of curv
ture on segment response and overall sheet proper
Clearly, the effective network modulus decreases when
fiber waviness is increased, as illustrated by simulations
networks of area fraction 33% in which we systematica
increased fiber amplitude~Fig. 8! or reduced fiber period
~Fig. 9!. For example, for networks with this area fractio
the meanEeff of networks of wavy fibers withA/d510 is
55% that of an average straight fiber (A/d50) network~Fig.
8!. For a network of fibers withT/d5100 and area fraction
33%, the mean normalizedEeff is similarly about half that of
one comprised of straight fibers~Fig. 9!. As described previ-
ously, values ofA/d510 andT/d5100 ~i.e., T/A510) are
physically somewhat higher than actually present in
sheets, although these values clearly illustrate possible
efits in reduction in waviness. Increases inEeff can be
achieved through fiber straightening via either reducing fi
amplitude~Fig. 8! or increasing fiber period~Fig. 9!, relative
to fiber diameter. Figure 8 also illustrates that for networks
a given area fraction, theEeff decreases with increased wav
ness, but tends to an asymptotic value at high degree
waviness. Our simulations ford/L50.002 ~Fig. 10! and
d/L50.001 ~Fig. 11! show that response of these networ
are within 10% of each other; thus, our simulation results
not strongly dependent upon diameter, validating use of
~17! in selection of simulation parameters.

The effect of fiber waviness on network response is m
significant at lower area fractions. For networks of 50% a
fraction, the meanEeff for ‘‘case 3’’ networks~comprised of
wavy fibers withT/A55 andA/d510) was approximately
50% that of ‘‘case 1’’ networks~comprised of straight fibers!
as shown in Figs. 10 and 11. For networks of 10% a
fraction, the meanEeff for case 3 networks was less than 1
that of case 1 networks.

In our earlier work,1 we developed upper bounds on th
effective modulus of NT sheets by considering random n
works of straight beam elements rigidly connected at ev
crossing point. The meanEeff of random beam networks with
every fiber crossing modeled as a torsion spring was foun
be within 20% of that of rigid jointed networks of the sam
area fraction, even when a very compliant torsion spring
rigidity parameter 0.05 was used1 ~Fig. 11 in Berhanet al.1!.
This suggests that, provided that a physical connection ex
at every fiber crossing, the network response is relativ
insensitive to the nature of these bonds. Figure 13 in
same work1 showed that the theoretical upper bound ofEeff

was more than ten times theEeff of the actual NT sheets
even if the area fractions of the sample materials were o
estimated by image analysis of SEM images. These res
together with those presented in Figs. 10 and 11, suggest
the large deviation of the experimental results from the th
retically achievable upper bound can be attributed to t
factors: first, a significant discrepancy between fiber cross
Downloaded 26 Apr 2004 to 141.212.136.84. Redistribution subject to AI
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density ~predicted statistically! and fiber bond density, and
second, fiber waviness. The relative importance of these
tors depends on the actual nanorope waviness~as described
by the ratios ofA/d and T/A), and the area fraction of the
real material.

Since the network response is largely due to bending
the ranges of area fraction of interest, the results of the s
cross-sectional simulations presented in Figs. 10 or 11 ca
applied to the NT sheets by using the moment of inertia
the close-packed rope section to scale the results. An
ample of this scaling is shown in Fig. 12, which shows t
normalizedEeff for NT sheets~modeled as straight segment!
using three different cross-section assumptions: a solid
cular section, a hcp section with equal load sharing am
tubes, and a hcp model assuming only the perimeter ro
are load bearing.

VI. CONCLUSIONSÕFUTURE WORK

Our geometric model allows proper scaling of simu
tions of finite, 1D fibers, to produce networks with intern
characteristics identical to those resulting from infinite 1
fibers. This may be of particular importance in considerat
of nanotube mats having no visible fiber ends.

Our mechanics simulations suggest that reduction
waviness in NT ropes may be a plausible route toward
provement of the Young’s moduli of random NT sheets,
ported in our earlier work.1 However, it is of less importance
than achieving high bond density; for random sheets, as
ing connections among all intersecting ropes16–18 appears to
be the most direct route toward improving the overall sh
properties. Clearly, there is a discrepancy between stat
cally predicted bond densities and physical bond densit
based on moduli in these materials. Determining the requ
ments for a fiber crossing to become a fiber bond is of hi
est importance. Three-dimensional modeling may be us
in this endeavor. Our work shows that presently, experim
tal moduli are approximately one-tenth the theoreti
moduli of ideal sheets. Use of more advanced image anal
~e.g., confocal Raman spectroscopy19! in concert with three-
dimensional simulations, may allow identification of mech
nisms for bond formation. Achieving the theoretical mod

FIG. 12. NormalizedEeff vs area fraction based on model used for cro
section of nanoropes~i.e., solid, hcp, and perimeter models!.
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will also require improvements in connections among in
vidual nanotubes within the ropes, for example, by cro
linking.

Recently, magnetically aligned ribbons have been
ported to exhibit effective moduli that are more than t
times those of conventionally manufactured NT sheets.7 Fur-
ther work may be useful in establishing the potential effe
of such alignment in NT sheets. This would involve a a
proach similar to that used in developing the upper bound
Young’s moduli for random sheets, possibly using a distrib
tion function to represent selective effects of magnetic ali
ment.
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