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Statistical geometry of random fibrous networks, revisited: Waviness,
dimensionality, and percolation
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Waviness alters both geometric and mechanical properties of stochastic fibrous networks and
significantly affects overall mechanical response, but few results are available in the literature on the
subject. In this work, we explore the importance of the dimension of constituent fibers~1D vs 2D!
in determination of percolation thresholds, and other fundamental statistical properties of fibers
having geometric waviness, in adaptation of classical theories on random lattices to practical
applications, including analysis of nanotube ropes and collagen bundles. Although the so-called
‘‘curl ratio’’ clearly affects the statistical properties, as evaluated by Kallmes and Corte a few
decades ago, we have found some results in this classic work to be inaccurate for systems containing
fibers of moderate waviness. Our main findings include the independence of the mean number of
crossings with regard to waviness, as well as the nonlinear dependence of probability of intersection
on waviness. Our investigation of percolation in wavy fiber networks reveals that the percolation
threshold is significantly increased, with increasing curl ratio. In addition, several nontrivial results
related to network properties of infinite straight lines are also described, some of which are believed
to have wide applications in practice. ©2004 American Institute of Physics.
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I. INTRODUCTION

Kallmes and Corte1 considered the effects of modera
curvature in fibers on the geometry and moduli of pap
several decades ago, following work on the statistical geo
etry of straight-fiber networks.2–4 Since that time, the behav
iors of many similarly constructed systems have been s
ied, including ‘‘nanoarchitectured’’ materials, from structur
proteins5,6 to carbon nanotubes7,8 ~Fig. 1!. Common features
of such materials include the random arrangement of fib
their high aspect ratio~length/diameter!, and their moderate
to high curvature.

It is important to distinguish between fiber crossing de
sity, a statistical quantity, and fiber bond density, whi
arises from the material properties and/or processing co
tions for a material. However, significant fractions of fib
crossings immediately form bonds in many systems~e.g.,
polymer-coated paper fibers!. Densities and distribution o
bonds in random fibrous materials are critically related
their mechanical properties;9–11 loads are more efficiently
transferred through tension~statically determinate, or trian
gulated systems!, or a combination of tension and bendin
~statically indeterminate systems!, than through friction~en-
tangled systems!. Comparisons of material properties, e.
modulus, with theoretical properties of a perfectly bond
system can allow inference as to the percentage of cross
which actually form bonds. Thus, determination of the s

a!Author to whom correspondence should be addressed; electronic
amsastry@umich.edu
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tistically predicted crossing density is an important first s
in materials analysis.

Systems of infinite, straight fibers were investigate
classically, by Goudsmit2 who derived several geometri
properties of such materials, including the number of po
gons formed byN lines, and the average number of sides p
polygon. Miles3,4 later studied these systems in more deta
deriving the mean perimeter, area, and statistical distribu
of number of sides of internal polygons. Richards12 reported
some further statistical results, including the mean separa
of two random points within the polygons, and the me
moment of inertia of the polygons. Later, Tanner13 derived
the distribution of the numbers of sides of the polygons.
of these approaches relied upon analytic solutions for
probabilities calculated, for infinite systems. Direct simu
tions of finite networks containing fibers of finite length~i.e.,
having finite ‘‘staple lengths’’ referred to in literature on p
per! have shown that they can have significantly differe
internal geometry than infinite fiber systems, particularly
low density.9,10

Quantitative description of random networks of wa
lines were first provided by Kallmes1 and Corte,1,14 who sys-
tematically expressed structural averages and totals in te
of the number and dimensions of the structural units. T
latter quantities were termed ‘‘independent variables,’’
cluding the number of lines per unit area, and the me
length and width of constituent fibers. The statistical av
ages and totals were termed ‘‘dependent variables,’’ and
cluded the total number of fiber crossings, the mean segm
il:
8 © 2004 American Institute of Physics
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length, and total number of polygons formed. The analyti
solutions derived showed the number of fiber crossings
strongly depend upon curl ratio, Kallmes’ and Corte’s me
sure of curliness.1 This rather counterintuitive finding fo
Poisson lines led to the present work, in which we estab
several apparent errors in this classic work, and also dev
some potentially useful relations for image analysis of
brous architectures. Specifically, we investigate both ana
cally and numerically, in infinite and finite systems, resp
tively, the dependence of crossing density on curliness, m
area of intersection for finite-thickness fibers, and perco
tion onset. It is important to note that for two noncoincide
intersecting, straight fibers, the number of crossings is
actly the probability of intersection, because there can be
and only one crossing point. Multiple crossing points a
possible, however, for two curly fibers, and thus the ‘‘numb
of crossings’’ is no longer equivalent to ‘‘probability of in
tersection.’’

We also calculate mean fiber segment length and s
ment length distributions, where a segment is defined as
distance between two consecutive intersection points alo
fiber, for the networks studied. In image analysis, mean c
erage and mean width of fibers are readily measured, an
we specifically examine the relationship of these two k
parameters to other network statistics. Thus, we set out
following four general objectives in the present paper.

FIG. 1. ~a! A scanning electron microscopy image of nanotube sheets sh
ing the wavy fiber segments;~b! an atomic force microscopy image o
epineurial collagen from a diabetic BioBreading rat sciatic nerve.
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~1! To develop a general methodology for characteriz
nonstraight, finite-width fibers, including kinked or curly fi
bers.

~2! To determine the probabilistic crossing densities in
range of finite-length fiber networks, and the determinis
crossing densities in infinite systems.

~3! To determine apparent fiber densities in these n
works, accounting for overlap, in order to readily allow im
age analysis of these systems for determination of volu
fraction in thick-fiber or high-density systems.

~4! To convey the importance of the dimensions~1D vs
2D! of the fibers in determining percolation thresholds:
particular, to determine the effects of finite thickness, cu
ness, and density on percolation threshold in fibrous syste

II. CHARACTERIZATION OF CURLY, FINITE-WIDTH
FIBER SYSTEMS

A. Mean curvature

Kallmes and Corte1 introduced the concept of a curl rati
t, the ratio of fiber running lengthl to end distancec, to
describe the degree of curliness. This quantity, howeve
not sensitive to local variations in curvature. For example
closed circular ring fiber and a closed rectangle ring fib
both havet5`, but have vastly different appearance, and,
we will show, properties.

The centerline of a two-dimensional~2D!, curly fiber
can mathematically be described via two functions, nam
y5 f (s), x5g(s), sP@0,l#, wheref andg are functions of
the positions along the direction of running length. As
substitute for curl ratio, we can calculate a ‘‘mean curvatu
k, defined as the mean value of curvature along the runn
length, per

k̄5
1

l E kds

5
1

l E yxx

~11yx
2!3/2

~11yx
2!1/2dx

5
1

l E yxx

11yx
2

dx ~1!

and a ‘‘mean curl radius’’r, per the usual definition as th
inverse of curvature, i.e.,

r̄ 5
1

l E 1

k
dx5

1

l E ~11yx
2!2

yxx
dx. ~2!

Fibers comprising segments of circular arcs, sweeping an
a, have mean curvature

k̄5
a

2 sin~a/2!
. ~3!

In two applications of network modeling, namel
collagens15 and carbon nanotubes,7,8 fibers present approxi
mately as sinusoids. The running length and mean curva
of sinusoidal fibers of negligible width, defined generally
y5A sin(vx), xP@0,d#, are determined from

-
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l5E
0

p/v
A11A2v2 cos2~vx!dx

5
1

v E
0

p
A11A2v2 cos2~ t !dt ~4!

and

k̄5
1

l E
0

p/v yxx

11yx
2

dx5
1

l E
0

p Av sint

11A2v2 cos2 t
dt, ~5!

respectively. The curl ratio for these fibers is simply

t5
l

d
5

1

p E
0

p
A11A2v2 cos2~ t !dt. ~6!

We can further derive an explicit relation between curl ra
t and angular frequencyv for a sinusoid, via evaluation o
the previous integral, yielding

k̄5
4

l
tan21~Av!. ~7!

B. Number of crossings

Kallmes and Corte1 claimed that for curly fibers, the
total number of interfiber crossings is

Nc5
~Nfl!2

pSt2
~8a!

or,

Nc5
x2

pS
, ~8b!

wherex represents the sum of the end-to-end distances
all fibers,S is the area of the domain in interest. This relati
is derived by assuming that the probability of intersection
two curly fibers is identical to that for two straight fiber
with the same end-to-end distances. An immediate impl
tion of this result is that the number of crossings in a fibro
system is strongly inversely proportional to the curl ra
~i.e., Nc;1/t2). Furthermore, the solution is apparently on
valid within some range oft, in light of unrealistic solutions
obtained for the limiting cases of straight or bent fibers,
any density. We thus reexamine calculation of the numbe
crossings as follows.

Statement: supposeNf fibers of arbitrary shapes are d
posited randomly in an arbitrary two-dimensional~2D! do-
main of areaS. Assuming fibers have the lengthsl1 ,
l2 ,...,lNf

, the mathematical expectation of the crossi
number is then exactly

~( i 51
Nf l1!22( i 51

Nf l i
2

pS
. ~9!

Proof: Consider two arbitrary straight-line segments,
lengthsj andh, whereu is the angle between the two se
ments. The probability that these two segments intersec
the ratio of the area of a parallelogram formed by the t
vectors, and the total area of the domain, namely,
Downloaded 27 Jul 2004 to 141.213.52.149. Redistribution subject to AIP
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usinuu. ~10!

The probability of intersection of any two arbitrary segmen
of lengths j and h is then the integral of this area ove
uP@0,p#, i.e.,

p~j,h!5
1

p E
0

p jh

S
usinuudu5

2jh

pS
. ~11!

A curly fiber can always be approximated by straight se
ments of infinitesimal size. Thus, the number of cross
points intersection between two arbitrary fibersl1 and l2

can be determined from a summation of the probabilities
the intersections of all of their constituent straight segme
per

Nc~l1 ,l2!5 (
k51

m1

(
q51

m2

P~jk ,hq!

5 (
k51

m1

(
q51

m2 2jkhq

pS

5
2l1l2

pS
, ~12!

wherej andh now represent the constituent line segments
fibersl1 andl2 , respectively, andm1 andm2 are the seg-
ment numbers on each of the two fibers. We readily de
mine the total number of crossings forl1 , l1 ,...,lNf

to be

Nc5
1

2

2( i 51
Nf ( j 51,j 51

Nf l il j

pS
5

~( i 51
Nf l i !

22( i 51
Nf l i

2

pS
, ~13!

where the factor of 1/2 corrects for the fact that intersectio
are implicitly counted twice, once on each fiber. For a lar
number of fibers,Nf@2, we have

S (
i 51

Nf

l i D 2

@(
i 51

Nf

l i
2 ~14!

and consequently,

Nc'
~( i 51

Nf l i !
2

pS
5

L2

pS
, ~15!

regardless of the length distribution, whereL is the sum of
the fiber running lengths. Note that this reduced solut
takes the same form as that derived by Miles,3,4 though
Miles’ solution was derived in the context of straight lines

Previously, it was shown that all dependent variables
be calculated fromNc .14 For example, the mean segme
length is

l c5
( i 51

Nf l i

2Nc
5

pS( i 51
Nf l i

2@~( i 51
Nf l i !

22( i 51
Nf l i

2#
. ~16!

If the fibers have the same lengthl, thenNc can be simpli-
fied as

Nc5
l2Nf~Nf21!

pS
, ~17!
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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whereNf is the total number of fibers.
If we normalize the parameters, i.e., we choose the fi

length to be 1 and the domain area also to be 1, we obt

Nc5
Nf~Nf21!

p
, ~18!

and the mean segment length is then

l c5
p

2~Nf21!
. ~19!

C. Effect of finite fiber width

The preceding derivations were based on the assump
that the fiber widths are negligible. We can develop sim
results, however, for systems of fibers of finite widths, fro
first principles. Assuming that any Poissonian system
coverageH in domainS, deposition of a small object of are
dC will result in a small increment of coveragedH. It fol-
lows thatdH5(12H)dC/S. Integration of this relation im-
mediately leads to

H512exp~2C/S!, ~20!

whereC is the total area of the individual objects. This ge
eral expression gives the mean coverage~or area fraction! of
any homogeneous Poissonian system.16 It follows for a sys-
tem of curly fibers that

H512expS 2(
i 51

Nf l iwi

S D . ~21!

D. Image analysis and network statistics: Mean
coverage and mean width

In image analysis of porous fibrous materials, e.g., c
bon nanotube sheets,7 mean coverage of the fiber phase a
mean fiber width are readily obtained. These two parame
can be used to determine the number of crossings and o
statistical properties of the network. Specifically, from Eq
~17! and ~20!, we find that

Nc5
S log2~12H !

pw2
, ~22!

where w represents the mean fiber width. Equation~22!
clearly does not account for possible overlap between fi
areas of interconnections among crossing fibers, example

FIG. 2. A cluster formed by the overlapping junctions between three th
fibers.
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which are shown in Fig. 2. Indeed, analytical determinat
of the number of fibers in a particular joint would require
very tedious categorization of the connecting graphs. Th
we reserve discussion of these properties for Sec. IV,
which we describe results of Monte Carlo simulations
such systems.

The mean segment lengthl c ~measured equivalently a
either the mean centerpoint-to-centerpoint length, or
mean length of the sides of the internal polygons! is invariant
to fiber width, as pointed out earlier by Miles.3 Combination
of Eqs. ~16! and ~21! gives an explicit relation for this pa
rameter, namely,

l c5
2pw

2 log~12H !
. ~23!

E. Probability of intersection

For systems containing fibers of very high curvature,
crossing events are not independent of one another. O
wise, locations of crossing points in a fibrous system
Poissonian, with the segment length distribution

f ~ l !5r exp~2r l !, ~24!

wherer is the density of crossing points, or the reciprocal
mean segment length, 1/l c . The probability that an arbitrary
fiber is isolated, is exactly the probability that no interse
tions occur on that fiber, namely,

Piso'exp~2rl!. ~25!

For two arbitrary fibers of lengthsl1 andl2 , the probability
of intersection is

P~l1 ,l2!5
2l1l2

pS
, ~26!

assuming the fibers intersect at a single point. This solu
is not valid in circumstances where fibers can intersec
multiple points. For example, for two identical, circular fi
bers, the probability of intersection is

P~l1 ,l2!5
4pr 2

S
5

l1l2

pS
, ~27!

which is exactly half of that derived in Eq.~26!.
Kallmes and Corte1 derived an expression for the mea

common area between two fibers as

dc5
p

2
w2. ~28!

This result was based on Mack’s earlier derivation17 of the
probability of intersection between two arbitrary, two
dimensional, convex domains of areasd1 , d2 , and perim-
etersU1 andU2 , respectively. The solution,

Pint5
d11d21U1U2 /~2p!

S
, ~29!

is invalid for curly fibers, because they are not convex. F
example, for two circular fibers having circumferenti
lengthsl1 andl2 , the probability of intersection is equal t

k
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Nc/2, with Nc given by Eq.~12!, since there are exactly tw
crossing points for each intersection. As a result

Pint5
Nc

2
5

l1l2

pS
, ~30!

whereas Eq.~29! gives

Pint5
0101~2l1!~2l2!/~2p!

S
5

2l1l2

pS
. ~31!

The inconsistency between the solutions of Eqs.~30! and
~31! illustrates the dependence of probability of intersect
on fiber waviness. Specific comparisons are detailed
Sec. IV.

F. Percolation threshold

Percolation is a collective event arising from interse
tions among individual members in a network. Since fib
waviness affects intersection probability, it also affects
network percolation threshold. From earlier work on straig
fibers,18,19 we know that, for fibers of lengthl and critical
density rc ~number of fibers per unit area! at percolation,
rcl

2'5.5960.05 is an invariant.
For a network formed by curly fibers of uniform shap

we can show thatg, given by

g5rl2 ~32!

is also invariant with respect to different length scales,
percolation onset. The parameterg can therefore be use
conveniently as a standard measurement of ‘‘percola
threshold.’’ We support this with a brief explanation. Cons
ering an arbitrary fibrous network, which percolates atrc ,
we can enlarge any subdomain arbitrarily, without alter
the fibers’ shapes and relative positions, or percolation sta
Supposing we increase each edge dimension by factorm, i.e.,
the domain area is magnified bym2, fibers’ running length
becomesml and fiber densityr is reduced torc /m2. Hence,
g5rc /m2* (ml)25rcl

2. On the other hand, if constituen
fibers form closed domains, an alternative quantity, ‘‘reduc
density’’ h5rcA, may be used to serve as a measuremen
percolation threshold, whereA represents the area formed b
a closed fiber ring.

We consider a specific case of the effect of curl ratiot on
g. Suppose a straight fiber is bent about its mid point
shown in Fig. 3. For an end-to-end distance of zero,
system properties match those of a system having stra
fibers of lengthl/2. Thus, at the percolation point we hav

rc~l/2!2'5.59. ~33!

Per the previous definition, we have

gc5rcl
255.5934522.36. ~34!

FIG. 3. An illustration of fiber shape transition from curl ratiot51 to t5`.
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Comparing this property to that obtained for the systems o
circular fiber ‘‘rings,’’ the percolation density would b
equivalent to that of fully overlapping disks, i.e.,

rcpr 2567.634% ~35!

based on Quintanilla’s recent measurement.20 This leads to

gc5rc~2pr !2'8.499. ~36!

Therefore,gc is clearly a function of curl ratiot, i.e.,

gc2c~t!. ~37!

III. CHARACTERIZATION OF STRAIGHT, INFINITE
FIBER SYSTEMS

Consider a fibrous network constructed by homogene
deposition of infinite straight lines of densityr, that is, the
total length of line segments isr per unit area. If a simulation
window of finite size is used to measure the statistical pr
erties of the network, scaling effects will be inevitably in
volved. The percolation problem of such a finite zone is no
trivial, since the network in question does not alwa
percolate. Nevertheless, if we define the term ‘‘percolatio
as the condition in which a single line, and not a cluster
line segments, crosses opposite sides of a domain, it is
sible to derive some fundamental solutions from the stati
cal theory, without resorting to estimation from Monte Car
simulation.

A. Percolation probability

The first problem is to determine the probability that
lines span the boundaries of a given domain. Consider
intersection of a line and a square domain. Clearly, there
band region in which the line at a fixed angle spans oppo
sides of the domain, as shown in Fig. 4~a!. The widthg of the
band region is

g5auucosuu2usinuuu, ~38!

whereuP@0,p# represents the inclination angle of the lin
anda is the length of a side of the square. If a single line
deposited into a large domain of areaS, the probability of
finding an arbitrary square region percolated by the line

p5
gl

S
5

aluucosuu2usinuuu
S

, ~39!

where uP@0,p/4#. If there are multiple random lines with
length l i ( i 51,2,...), as shown in Fig. 4~b!, we have

FIG. 4. Schematic showing the notation used in derivation of percola
properties for infinite fibers.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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( al j uucosu i u2usinu i uu5
4

p
aLE

0

p/4

ucosu2sinuudu

5
4~A221!

p
aL, ~40!

whereL represents the total length of the line segments. T
union area of all the line segments is then given by

SF12expS 2
4~A221!

p
a

L

SD G . ~41!

The probability of finding that the square is percolated by
least one line is equivalent to the ratio of the union area
the domain area, namely,

p5
Sunion

S
512expS 2

4~A221!

p
ar D . ~42!

When the size of the square is sufficiently small, i.e.,ar
!1, this probability becomes after Taylor series expansio

p'0.527ar. ~43!

Likewise, the probability of finding that all of the lines pe
colate the square domain is

12expH S 4~A221!

p
21D arJ . ~44!

Trivially, the probability of finding no line segments residin
inside the square is

expS 2ar
4

p
A2E

0

p/4

cosudu D 5expS 2
4

p
ar D . ~45!

This general method also applies to other dom
shapes. For example, the probability of finding that no lin
are contained inside an equilateral triangular domain of s
lengtha is

expS 2ar
6

p E
0

p/6

cosudu D 5expS 2
3ar

p D . ~46!

In more general, for ann-side equilateral polygon of sid
lengtha, whenn is an even integer, the probability of findin
no lines across the polygon would be

expS 2ar
1

sin~p/n!

2n

~n22!pE0

~n22!p/2
cosudu D

5expS 2ar
2n

~n22!p
cos

p

n D ~47!

and whenn is an odd integer, the probability becomes

expS 2ar

cos
p

2n

sin
p

n

2n

~n22!p E
0

~n22!p/2
cosuduD

5expS 2ar
2n

~n22!p
cos

p

n
cos

p

2nD . ~48!
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For a circular domain of diametera, the probability of find-
ing no lines crossing the domain is simply

exp~2ar!. ~49!

B. Mean length of line segments

Supposing an infinite line at inclination angleu crosses
ana3a square domain, the mean length of the line segme
truncated by the four sides of the square can be written

l5a
1

2
@~11tanu!1~12tanu!#secu/~11tanu!

5
a

cosu1sinu
, ~50!

where uP@0,p/4#. Therefore, the mean length of the tru
cated lines at all angles is

l5
4

p E
0

p/4 a

cosu1sinu
du5

a

A2
ln~A211!'0.6232a.

~51!

Applying Eq. ~15! yields the relation between the number
intersections and the total number of fibers,

Nc5
~0.6232aNf !

2

pa2
'0.1236Nf

2. ~52!

Thus, the number of crossings is solely a function of t
number of fibers, for straight fibers.

IV. SIMULATIONS: CURLY AND STRAIGHT FIBER
SYSTEMS

We verified several of our solutions for finite fibers usin
Monte Carlo simulations. First, we investigated use of o
analytical solution for the number of crossings in systems
curly fibers, with specific emphasis on determination of ve
fication of the independence of the number of crossings
fiber shape.

Next, we investigated the effect of finite width on mea
coverage and mean width numerically, since these par
eters are critically important in image analysis of fibrous s
tems. Finally, we performed simulations of probability
intersection, as a precursor to determination of percola
threshold in various curly, kinked, and straight-fiber system

A. Number of crossings

To verify our solution, Eq.~9!, we studied curly fibers of
sinusoidal shape of the formy5A sin(vx). To fiber lengths
controllable, periodic boundaries were applied to the n
works. Meanwhile, all parameters, includingl, A, andv, are
assumed fixed. In all simulations,A50.05 and unit running
lengths for fibers were used~Fig. 5!. Simulations were re-
peated for different number of fibers; results are shown
Fig. 6. We can see that excellent agreement is achieved
tween the numerical results and the theoretical solution us
Eq. ~9!. Clearly, the number of fiber crossings is invariant
fiber shape.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp



s

ul
e

re
w

-

e
th

e
bl
ul
in

sult

00
ne
en
al

lity
of
of

of
and

ere
tion

rl

es
as

pli

b
es

er-
s are
ick-

1324 J. Appl. Phys., Vol. 96, No. 3, 1 August 2004 Yi, Berhan, and Sastry
B. Finite fiber widths: Image analysis and network
statistics

Our previous analytic solution for the number of cros
ings in a fibrous system, Eq.~9!, is valid only for very thin
fibers. Because of the tedious nature of an analytic calc
tion of the number of crossings in a finite-width network, w
conducted Monte Carlo simulations to develop empirical
lations for a range of such systems. The joint formed by t
crossing fibers of widthw, and inclinationsa and b, com-
prises a rhombus, of side length

m5
w

sin~a2b!
. ~53!

The four vertices are

x2x05
6cosa6cosb

sin~a2b!
w

y2y05
6sina6sinb

sin~a2b!
w

, ~54!

wherex0 andy0 represent thex andy positions of the cross
ing point of the two center lines~or, fiber axes!. Once the
four vertices of each joint rhombus are located, the conn
tivity between joints can be examined by determining
intersection status between each individual boundary line
each rhomboidal joint. The total number of clusters d
creases with increasing fiber width, since joints inevita
merge, forming fewer, larger clusters. This intuitive res
was verified by simulation results shown in Fig. 7, where

FIG. 5. Random networks of 100 fibers of unit running length and am
tudeA50.05 for ~a! v510 and~b! v520.

FIG. 6. Simulations, and present and prior analytical results for the num
of fiber crossings vs number of fibers, for systems of varying fiber wavin
Downloaded 27 Jul 2004 to 141.213.52.149. Redistribution subject to AIP
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our Monte Carle results are compared to an analytic re
reported earlier by Corte,14 namely,

Nc5 1
2~11e2Nflw!Nf

2l2/pS. ~55!

Our simulations were performed in a unit cell, using 2
fibers of unit length. Fiber widths were varied to determi
the effect of width onNc . Clear differences are seen betwe
simulations performed here and the prior analytic
solution.14

C. Probability of intersection

To illustrate the dependence of intersection probabi
on fiber waviness for a specific shape of fiber, a series
simulations were performed using two sinusoidal fibers
half period. A unit size simulation window and two fibers
unit length were used in these simulations. Ten thous
simulations were performed in each case and the results w
averaged. In the results presented in Fig. 8, the intersec
probability was normalized against the result att5`, and
interpreted as a function of the curl ratiot, using Eq.~6!.
Because the two fibers act as straight fibers of lengthsl and
l/2 in the two extreme situations of zero and infinite cu
ratios, respectively, we have

pint~t50!5
2l2

pS
~56!

and

pint~t5`!5
2~l/2!2

pS
5

l2

2pS
. ~57!

Thus, the normalized probability monotonically decreas
with curl ratio, asymptotically approaching a value of 0.25
t→`.

-

er
s.

FIG. 7. Number of fiber crossings as a function of number of fibers. Ov
lapping junctions are considered to comprise single crossings. Result
normalized by the number of crossings, without consideration of fiber th
ness.
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D. Percolation threshold: curly, kinked, and straight
fiber systems

Dependene of percolation threshold on curl ratio w
investigated for 2D, curly fibers having three distinct shap
as shown in Fig. 9~a!: ~1! sinusoid,~2! triangle, and~3! rect-
angle. These representative geometries could provide ins
as to the effect of the type of waviness on percolation pr
erties in general. For each of the three types, we constru
a square simulation window and deposited fibers rando
onto this domain. Monte Carlo simulations were perform
to determine ther at which the geometric percolation acro
a pair of opposite boundaries arose. Each fiber was divi
into 20, straight-line segments so that the interfiber conn
tivity would be detected via checking the connectivity b
tween line segment pairs. Fifty simulations were perform
at each density and the results were averaged. Peri
boundaries were applied. Fiber number was held to 30
5000 in each simulation so that the fiber length was less t
1/10 of the window size in order to minimize the scalin
effect. For each shape, we held fiber length constant for v
ous curl ratios, as shown in Fig. 9~b!. The results are pre
sented in Figs. 10~a! and 10~b!. These results were also tab
lated in Table 1 using linear interpolation at evenly spac
values ofm~51/t!. Simulation errors were estimated to a
proximatelyDr560.08.

FIG. 8. Intersection probability as a function of curl ratio, between t
sinusoidal fibers of length one-half period. Results are normalized by p
ability of intersection between two straight fibers.

FIG. 9. Fiber shapes investigated for percolation simulations, including~a!
three distinct types of curves, and~b! sinusoidal curves having various cu
ratios.
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dV. DISCUSSIONÕCONCLUSIONS

A. Number of crossings in straight- and curly-fiber
systems

Clearly, Eq.~8!, an expression for number of crossing
in systems of curly fibers derived by Kallmes and Corte,1 is
in error, as shown both by our own analytic solution of E
~9!, and comparison of both solutions with Monte Car
simulations shown in Fig. 6. In fact, Eq.~8! is an acceptable
estimate only whent is very close to 1. The immediate im
plication of our new solution is that the number of crossin
is independent of fiber waviness.

We additionally found that the number of crossings
solely a function of the number of fibers in infinite fibe
systems. This result is useful in practice, because our s
tion, Eq. ~52!, can be used readily to deduce the statisti

b-

FIG. 10. ~a! Percolation thresholdgc as a function of curl ratio, wheregc is
expressed asNfl

2, andl is fiber length.~b! Percolation thresholdgc* as a
function of curl ratio, wheregc* is expressed asNfc

2 instead ofNfl
2, and

c is the end-to-end distance.
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properties of fibers from the result of image analyses,
thus enables the proper selection of modeling parame
thereafter.

In finite-width fiber systems, we observed significa
discrepancies among our simulation results and Corte14

prior analytical formula. This prior result, Eq.~55!, is appli-
cable only for systems having volume fractions below 10

B. Probability of intersection, and percolation
thresholds

We found that even slight waviness can have a n
negligible effect on the probability of intersection in fibrou
systems, as shown by comparison of simulations of inters
tions in wavy and straight-fiber systems, and comparis
with classical solutions for straight fibers~see Fig. 8!. For
example, for a curl ratio oft51.1, use of Eq.~26! to calcu-
late P results in an overestimation of 4%; fort51.2, the
resulting overestimation is 8%. Whent51.5 ~roughly
equivalent to that of a half circle!, the overestimation ex
ceeds 20%.

The dependence of probability of intersection on fib
waviness led us to numerically investigate a dependenc
percolation on fiber waviness. Three representative ge
etries for fibers, namely, sinusoidal, triangular, and rectan
lar configurations, were used to systematically examine
colation thresholds. In the simulations, unit simulati
windows were used and fiber lengths between 0.05 and
were selected, in order to minimize scale effect. The num
of fibers in each realization was varied from 2000 to 50
depending on curl ratio. One hundred simulations were p
formed in each case, and results were averaged. Severa
portant conclusions can be drawn from these percola
simulations.

~1! Waviness significantly affects the geometric perco
tion threshold in fibrous networks. Increases in curl ratiot

TABLE I. Comparison of percolation thresholds among three differ
shapes of fibers.

1/t gc ~sinusoidal! gc ~triangle! gc ~rectangle!

1.00 5.63 5.63 5.63
0.95 5.78 5.89 5.87
0.90 5.97 6.16 6.13
0.85 6.20 6.44 6.42
0.80 6.46 6.75 6.73
0.75 6.76 7.08 7.04
0.70 7.06 7.44 7.32
0.65 7.39 7.84 7.59
0.60 7.73 8.26 7.85
0.55 8.12 8.73 8.12
0.50 8.56 9.26 8.43
0.45 9.08 9.83 8.80
0.40 9.69 10.48 9.24
0.35 10.39 11.20 9.76
0.30 11.18 12.02 10.36
0.25 12.08 12.95 11.06
0.20 13.12 14.04 11.92
0.15 14.40 15.35 13.06
0.10 16.08 16.97 14.74
0.05 18.47 19.04 17.39
0.00 22.51 22.51 22.51
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leads to increase in fiber density required for percolati
This observation logically follows our findings that increas
in curl ratio reduces probability of intersection within arb
trary pairs of fibers. For example, for sinusoidal fibers
slight waviness 1/t50.9, gc is found to be 5.97, an increas
of 6% over that for straight fibers; if 1/t50.7, gc is 7.06,
with an increase of 25% compared to that of straight fibers
1/t50.5, gc is 8.56, an increase of 52%.

~2! Percolation threshold is a monotonic function of cu
ratio, with values between 5.63 and 22.51, for each of
three shapes of fibers investigated. This is again consis
with our previous finding that probability of intersection is
monotonic function of curl ratio.

~3! Percolation threshold does not differ much for va
ous shapes of fibers having identical curl ratio. For exam
sinusoidal fiber systems studied had percolation thresh
very close to those of the other two shapes studied, w
variations of less than 10% for all values oft. Therefore, use
of a sinusoidal model appears reasonable in many prac
applications wherein the percolation threshold is sought.

In summary, we found that the number of intersectio
in a Poissonian fibrous network is independent of fiber wa
ness. However, waviness in the fiber shape raises geom
percolation thresholds. In a network comprised of infin
straight fibers, the number of crossings depends only on
number of fibers. Intersection probability between individu
fibers, as well as the clustering of junctions in thick-fib
systems, were also studied in detail. Future work will inclu
application of these findings to image analysis of curly-fib
systems, including collagens.
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