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The void percolation and conduction problems for equisized overlapping ellipsoids of revolution are inves-
tigated using the discretization method. The method is validated by comparing the estimated percolation
threshold of spheres with the precise result found in literature. The technique is then extended to determine the
threshold of void percolation as a function of the geometric aspect ratio of ellipsoidal particles. The finite
element method is also applied to evaluate the equivalent conductivity of the void phase in the system. The
results confirm that there are no universalities for void percolation threshold and conductivity in particulate
systems, and these properties are clearly dependent on the geometrical shape of particles. As a consequence,
void percolation and conduction associated with ellipsoidal particles of large aspect ratio should be treated
differently from spheres.
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I. INTRODUCTION

Percolation is typically associated with conduction prob-
lems in heterogeneous materials. It is a phenomenon in
which there exists at least one domain-spanning conductive
pathway in a multiphase material. �One of the phases could
be the void space.� In a system of overlapping particles, for
example, when the particle density exceeds a certain thresh-
old, the particles will form large clusters that span the whole
material domain. Although the concept of percolation was
originally introduced to study fluid flow in porous media �1�,
it has a wide application in other areas as well. For example,
it is evident that the determination of mathematical and
physical characteristics associated with percolation phenom-
ena is important in studying fibrous or particulate engineered
materials, such as advanced batteries and carbon nanotubes
for mechanical �2�, filtration �3�, and conductive �4,5� prop-
erties.

Two methods—analytical approach and Monte Carlo
simulation—have been extensively used to study percolation
phenomena. The earlier efforts were primarily concentrated
on seeking the analytical solutions for percolation thresholds
of fixed lattices in two or three dimensions �6�. In the last
decades, with the aid of advanced computer technologies,
many researchers made great efforts in solving continuum
percolation problems related to particles randomly distrib-
uted in space. Pike and Seager �7�, for example, reported
Monte Carlo simulation results for the effects of various
probabilistic and deterministic bonding parameters in sphere
continuum percolation. Some researchers attempted to use
the series expansion technique �8� and the integral method
�9� to estimate the percolation properties for continuum per-
colation, via checking the convergence of the mean cluster
size expressed in the form of a power series. However, the
requirement of considerable computational effort poses a
major hurdle to its practical application. In general, Monte
Carlo simulation method has been proved more efficient in
determining percolation properties of continuum percolation
problems, especially for nonspherical particles �10�.

For conduction problems in multiphase materials, analyti-
cal approximations using the effective medium theories can

readily be found in literature �11,12�. However, the Monte
Carlo simulation method is much easier to implement and
has thus been used more extensively. For example, in Cheng
and Sastry’s work �13�, fibrous materials relevant to battery
technologies were examined for their conductive properties
via modeling the material system as a fibrous network. They
found that the equivalent conductivity of the system is
strongly dependent on fiber aspect ratio.

Typically, percolation and conduction are relative to the
material media in a multiphase system. When the intercon-
nection of the void phase is in interest, the percolation is
called “void percolation” or “Swiss-cheese percolation” �14�.
This type of percolation is closely related to the fluid flow
through porous media. However, much less attention has
thus far been paid to void percolation than the traditional
percolation problems. This is partly due to the complexity in
mathematical expressions of the connection functions in void
percolation problems. Even for the simplest case of mono-
disperse spheres, it was not until very recently that research-
ers realized that the void percolation problem can be simpli-
fied by mapping the system to a bond network associated
with the Voronoi tessellation of the sphere centers �15�. Be-
cause of the increased complexity involved in computing the
Voronoi tessellation and the memory requirement to store the
data structures, the numerical accuracy for the computed per-
colation threshold was originally not satisfactory. However,
thanks to the advancement of computer technology and the
refinement of the solution method, the results have been im-
proved significantly over the last decade. For example, Rin-
toul �16� reported a technique using scaling theories to obtain
a very precise result �0.0301±0.0003� for percolation thresh-
old of mondisperse sphere systems.

Some researchers proposed that there exist universal con-
stants for void percolation thresholds and other conductive
properties for spheres of different size and distribution �17�.
Rintoul’s work, however, overturned this conjecture, by
showing the differences in the percolation threshold between
monodisperse and bidisperse sphere systems. Although it is
helpful investigating the fundamental characteristics of void
percolation for spheres, an interesting question arises: does
the geometric shape of nonspherical particles also affect the

PHYSICAL REVIEW E 74, 031112 �2006�

1539-3755/2006/74�3�/031112�6� ©2006 The American Physical Society031112-1

http://dx.doi.org/10.1103/PhysRevE.74.031112


percolation properties? Previous work on overlapping ellip-
soidal systems showed that the aspect ratio of particles can
have significant effects on the percolation properties of the
particle phase. For example, the percolation threshold is
around 0.20 for ellipsoids of aspect ratio 3, whereas, in com-
parison, the percolation threshold for spheres is about 0.29
�10�. It is then naturally conjectured that the geometric shape
can affect the percolation properties of the void phase as
well. To test and verify this hypothesis is the main motiva-
tion of the present work.

For the void percolation of ellipsoids, the mathematical
treatment of the interparticle connectivity is far more diffi-
cult than the sphere problems, due to the increased degrees
of freedom for each particle. To the author’s knowledge,
there does not exist any mapping technique to reduce the
problem into an equivalent Voronoi tessellation network.
However, if the entire system is discretized into a fine mesh
using sufficiently small pixels, then it is possible to map the
original continuum system into its lattice equivalent with a
high resolution. The determination of the characteristic prop-
erties of the void phase including percolation threshold and
equivalent conductivity will be reduced to a traditional lat-
tice problem, and the Monte Carlo simulation method can be
used to identify these properties. In fact, the powerful com-
puter technologies today enable the Monte Carlo modeling
of percolation problems for nonspherical particles in a re-
markably efficient way. Comparing with the 0.5 million
words of computer memory used by Elam et al.’s work �18�
two decades ago, the personal computers and workstations
these days can easily handle gigabytes of memory allocation.
When the mesh is sufficiently refined, one can obtain ap-
proximations of the exact percolation thresholds for both the
material phase and the void space.

II. METHODS

A. Generation of random ellipsoids

A three-dimensional cubic simulation domain of unit size,
namely, a “unit cell,” was used to compute the void percola-
tion of overlapping ellipsoids. To minimize the number of
variables in the problem, spatially uncorrelated, equisized
ellipsoids of revolution �with two geometric parameters:
semiaxis length a and radius of revolution b� rather than
generalized triaxial ellipsoids �with three geometric param-
eters� were under investigation. The ratio of the two semiaxis
lengths of ellipsoid is defined as the “aspect ratio” in this
study. The ellipsoids were generated from a Poisson process
in which the centers and orientations of the particles fol-
lowed a homogeneous distribution. In the spherical coordi-
nate system, the axes of particles were oriented under a dis-
tribution function biased towards the z-axis, following the
discussion by Yi and Sastry �10�. In order to minimize the
boundary and scaling effects, the following treatments were
applied during the generation process: �i� A sufficiently large
number of ellipsoids ��100 000� were generated in the
simulation domain. This placed a restriction on the particle
diameter to around 0.04 at the onset of percolation, which is
equivalent to 1/25 in terms of the ratio between the particle
size and the simulation domain. When such a small particle-

domain ratio is used, the boundary effects are negligible, per
Yi and Sastry �19�. Therefore, periodic boundary conditions
were not applied to the model since this would not induce
any appreciable change in the result. �ii� The centers of el-
lipsoids were uniformly generated in a domain slightly larger
than the unit cell to accommodate those particles that crossed
the domain boundary but whose centers were located outside
the cell, as shown in Fig. 1. This process was followed by the
removal of the materials located outside the unit cell. Con-
sequently, the void phase in the system was formed from the
enclosures of the ellipsoidal surfaces.

B. Discretization of the particulate system

The ellipsoidal system was then discretized into a three-
dimensional uniform lattice, following a procedure similar to
the digitalization of a picture. Let us denote each crossing
point in the lattice as a “node.” The location of each node
relative to each ellipsoid was examined based on the math-
ematical equation of the ellipsoidal surface. The node was
then assigned with a binary value, or “digitized,” based on
whether it was located in the interior of the particle. To make
the algorithm more efficient, only those nodes in the vicinity
of each ellipsoid were examined; that is, the ellipsoids were
binned based on the extreme locations of their surface points.
In the spherical coordinate system, if one denotes �x, �y,
and �z as the differences of extreme locations of an ellipsoid
of revolution in the x, y, and z directions, respectively, then

�x = 2�b2 cos2 � cos2 � + b2 sin2 � + a2 sin2 � cos2 � ,

�1�

�y = 2�b2 cos2 � sin2 � + b2 cos2 � + a2 sin2 � sin2� ,

�2�

�z = 2�a2 cos2 � + b2 sin2 � , �3�

where a is semiaxis length, b is radius of revolution, �
� �0,�� is the elevation angle from the z axis and �
� �0,�� is the rotation angle about the z axis. Only those
nodes located inside the “bin” encompassing each ellipsoid
were checked for their locations relative to the ellipsoid. The
next step was to remove the nodes located inside at least one
of the ellipsoids. A site lattice network for the void space was
then formed from the remaining nodes in the system. Appar-

FIG. 1. Generation and discretization of random particles.
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ently the surface constructed in this way was not smooth
geometrically because it was composed of block elements.
However, when the mesh is sufficiently refined, the geometry
will approach to the real void space. A converge test was
made to illustrate the variation of the void union volume as a
function of node number. This will be presented in the result
section later.

C. Checking for conduction and percolation

Once the void space was mapped into a lattice network,
the original continuum percolation system was reduced to a
lattice percolation problem. The simulation scheme to check
for percolation in such a lattice problem would be to search
for a domain-crossing path that connects nodes from one side
of the system to the opposite side. One way to do this would
be to compute the equivalent conductivity in the correspond-
ing thermal or electrical models. Specifically, in the thermal
analysis, for example, a unit temperature difference can be
prescribed on the two opposite surfaces of the system. Ap-
plying the finite element method, the reactive heat flux can
then be computed as an approximation to the equivalent ther-
mal conductivity. A zero equivalent conductivity indicates
the onset of percolation in the system; otherwise, it is not
percolated. However, finite element analysis typically de-
mands large amounts of computer memory. This places a
limitation on the applicability of the method especially when
a high accuracy in the solution is required. Under the restric-
tion of 32-bit computer memory allocation, for example, the
maximum size of the model is approximately 200–300 ele-
ments per side of the unit cell. In view of this, a different
method where an efficient algorithm adapted from the so-
called burning algorithm �20,21� has been used to determine
the percolation status of the resulting lattice network. Briefly,
the nodes appearing on an arbitrary side of the unit cell were
first identified. The connections between these nodes and the
adjacent nodes in the system were then examined. The pro-
cess was progressively repeated until no additional connec-
tions were found in the entire system. The system was de-
tected as percolated if and only if such connections spanned
to the opposite side of the domain. The advantage of this
method lies in the fast speed and its independency of any
commercial code.

A convergence test using various element numbers was
performed for the problem of overlapping spheres. The esti-
mated void percolation threshold for spheres was compared
to the precise result found in literature. This test served as a
validation procedure for the percolation searching algorithm
developed in this study. The method was then extended to
ellipsoids to obtain the void percolation threshold as a func-
tion of geometric aspect ratio. For each aspect ratio, perco-
lation condition was examined at different volume fractions
with equispaced intervals. Simulations using the same pa-
rameters were repeated for five times at each volume frac-
tion. Those volume fractions �interpolated values� where the
percolation was detected at a probability of 50% were re-
corded as percolated and the lowest volume fraction found
percolated was identified as the “percolation threshold.”

D. Scaling effects

Percolation threshold is always defined by default in the
context of an infinite system. For a system of finite size, the

onset of percolation is no longer deterministic and only a
probability is available to describe the status of percolation.
When we say a percolation threshold for a finite system, it is
usually referred to the situation when the probability of per-
colation is 50%. Previous work showed that the continuum
percolation probability in a finite domain varies with the ra-
tio of the particle size and the domain �22�. From the scaling
theories, it is possible to estimate the percolation threshold of
an infinite domain based on the percolation probability of a
finite system. In the current problem using a unit simulation
cell, the scaling effects for determining percolation thresh-
olds involve two parameters: �i� the size of particles �or, the
total particle number in the simulation domain�; �ii� the num-
ber of nodes �or elements� in the lattice network. Regarding
the first effect, numerous works on the sphere problems us-
ing both analytical and simulation approaches can be found
in literature. One of the main conclusions is that the perco-
lation threshold varies linearly with N� where N is the total
number of spheres and � is a constant �23�. This finite-size
scaling can be used to calculate the percolation properties for
an infinite system. For the second effect, it turns out that the
computed percolation threshold changes proportionally with
element length, or ��1/m, where � is the percolation
threshold in terms of volume fraction; m is the element num-
ber along each side of the simulation domain.

In this study, a large number of particles were maintained
in each simulation. As a consequence, the particle size effect
was usually very small. When the particle aspect ratio is
large, however, the finite size scaling effect is no longer neg-
ligible and it should be correlated to the major axis length of
particle. In fact, in the extreme case where the particle length
is greater than one, the system is always percolated regard-
less of the particle number. In view of this, the major axis
length of particle was carefully maintained to be less than
1/6 in the present study. The effect of the element size �or,
element number� was investigated via running the simulation
under different element numbers while maintaining the par-
ticle size as constant. A curve of percolation threshold versus
element number was then plotted to estimate the exact per-
colation threshold when the element number approaches to
infinity.

It should be pointed out that the maximum element num-
ber under investigation was 1200 along each side of the unit
cell, due to the restrictions of the available computer
memory. This placed a limitation on the aspect ratio of par-
ticles since a reasonable number of elements must be present
along the minor axis of particle meanwhile the major axis
cannot be too long, as discussed previously. It has been
found that it would be difficult to accurately determine the
void percolation threshold for particles of aspect ratio greater
than ten based on the current technique. Therefore the par-
ticle aspect ratio under investigation was limited to those
values below ten.

III. RESULTS

A convergence test was performed on the union volume
computation for the void space formed by overlapping
spheres and ellipsoids. Figure 2 shows the void volume frac-
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tion as a function of element number m along each side of
the simulation domain. Results for two aspect ratios 1 and 3
are presented. The void volume fraction was normalized by
its exact solution, whose value was approximated as the
computed volume fraction when m=500. It can be seen that
both curves oscillate strongly at low m’s, showing significant
variations in coarse meshes. However, when the element
number exceeds 50 or so, the oscillations in the curves be-
come relatively mild and the estimated union volume is very
close to the exact solution with a numerical error around 2–
3 %. When the element number m is �100, the computed
void volume fraction further approaches to its exact solution,
with the error tolerance within 1%. Under the maximum el-
ement number m=1200 in the present study, there is no
doubt that the computed volume fraction is considerably ac-
curate.

Figure 3 is the visualization of the void space formed by
4000 monodisperse spheres having radius 0.05. The void
system was discretized into approximately 15 000 elements,
with element number 50 along each side of the unit cell. The
volume fraction of the void system is �12%. The finite ele-
ment analysis was performed to compute the equivalent con-
ductivity using the general-purpose commercial software
ABAQUS. Unit material properties were assigned to each ele-
ment, and a unit temperature difference was prescribed on
two opposite faces of the model. Thermally insulated bound-
ary conditions were specified on the rest surfaces. The con-
tour plot in Fig. 3 displays the steady-state temperature dis-
tribution in the system. Since all the parameters were
normalized to unit values, the reactive heat flux across either
of the constrained surfaces was equivalent to the thermal
conductivity of the whole system. The analysis was per-
formed repeatedly for five times at six different volume frac-
tions and the results are presented in Fig. 4. The short error
bars in the figure indicate mild variations in the equivalent
conductivity. �Apparently the standard variation is a function
of the scaling effects, namely the number of particles and the
number of elements.� At volume fraction 0.05, both the mean

value and the standard deviation of the computed conductiv-
ity are zero, implying that the critical volume fraction of
percolation for spheres is located somewhere between 0.05
and 0.1. Note that the element number m=50 was used in the
computation for Fig. 4. Further studies using larger m’s �up
to 200� revealed that the void percolation threshold was in
the vicinity of 0.05. Compared to the precise result of 0.03
found in the literature, this computed solution is apparently
overestimated due to the insufficient element number used in
the finite element analysis. It has been concluded that, in
general, it is not very accurate to use the finite element
method to identify the percolation threshold in void percola-
tion problems, due to the complexity in matrix operations as

FIG. 2. Converging test for computation of the void volume
fraction, using the discretization method. Particle number=4,000;
the exact solution of the void volume fraction is 0.12. FIG. 3. Discretized void percolation system of spheres. Contour

plot shows the temperature distribution for computing equivalent
conductivity in the finite element analysis. Volume fraction of the
void phase is 0.12; particle number=4000; sphere radius=0.04; el-
ement per side is 50; total element number�15 000.

FIG. 4. Equivalent conductivity of the void phase as a function
of void volume fraction. The parameters used here are the same as
in Fig. 3.
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well as the restrictions on computer memory. Nevertheless,
the solution routines in this method are convenient to imple-
ment and they do not require additional algorithms. In addi-
tion, low resolution is relevant to the percolation threshold
only �at very low volume fraction�, not the conductivity of
percolated systems �at higher volume fractions�. Thus, it is
helpful to apply the method in those situations where con-
ductive property is the main interest.

Figure 5 shows convergence testing on the lattice perco-
lation algorithm for determining the void percolation thresh-
old of overlapping spheres. It should be noted that this algo-
rithm is different from the finite element method used for
conduction computation. Different element numbers ranging
from 100 to 1200 elements per side of the simulation domain
were used in Fig. 5. At m=100, the computed void percola-
tion threshold � is 0.073 in terms of volume fraction of the
void phase. When m=200 is used, this value becomes 0.052,
showing substantial improvement in the solution accuracy.
For m=1,200, the detected percolation threshold is 0.0328,
which comes very close to the precise solution 0.0301. The
curve will be asymptotic to the exact percolation threshold �c
when m→	. To identify this asymptotic solution, the com-
puted percolation threshold was plotted as a function of ele-
ment length, or 1 /m, as shown in Fig. 6. Clearly, the relation
between � and 1/m approximately forms a straight line. By
linear extrapolation, the percolation threshold at 1 /m=0 �that
is, the y intercept of the curve� was identified as �c
=0.0294. This value was slightly underestimated compared
to the precise result 0.0301. However, this resolution should
be considered acceptable due to the approximating nature of
the discretization method.

By applying the same technique to ellipsoids, the
asymptotic value of the void percolation threshold �c �that is,
the extrapolated � when m→	� for ellipsoids of revolution
was estimated for several different aspect ratios ranging from
1 to 8, as shown in Fig. 7. From this curve, it is clear that the
threshold does not possess a constant value. In fact, the es-
timated void percolation threshold increases monotonically
with the aspect ratio. For example, the void percolation

threshold rises from 0.0294 to 0.0325 when the aspect ratio
increases from 1 to 2. For ellipsoids of aspect ratio 8, the
percolation threshold becomes 0.0412, which is about 40%
higher than that of sphere. This is undoubtedly a non-
negligible difference, confirming that one must deal with
spheres and ellipsoids separately when the void percolation
problems are under investigation. It is still unclear if the void
percolation threshold will reach an asymptotic and finite
value when the aspect ratio of ellipsoid approaches infinity.
This requires further studies in future.

IV. CONCLUSION

The void percolation and conduction problems involving
equisized overlapping ellipsoids of revolution were studied
using the discretization method. The void percolation thresh-
old for ellipsoids was determined as a function of particulate

FIG. 5. Computed void percolation threshold of spheres as a
function of element number m.

FIG. 6. Computed void percolation threshold of spheres as a
function of element length 1/m.

FIG. 7. Void percolation threshold �extrapolated values for zero
element length� as a function of ellipsoid aspect ratio.
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aspect ratio. The estimated percolation threshold of spheres
was compared to the precise result found in the literature,
showing good agreement. The equivalent conductivity was
also estimated from the finite element analysis. These results
indicate that there are no universal constants for void perco-
lation threshold or conductivity for particulate systems.
Therefore, the results obtained from systems consisting of
spheres cannot be applied to problems involving ellipsoidal
particles in general. This is true for not only the traditional
continuum percolation systems but also the void percolation

problems. In addition, it should be pointed out that evalua-
tion of conductive properties is closely related to the void
percolation problem in the current work because both in-
volve the same discretization method. They reveal the par-
ticle connectivity at different material densities: the compu-
tation of void percolation threshold is relevant to the
connectivity at low volume fractions of the void phase,
whereas the conductivity computation is an effective way to
evaluate the connectivity in a percolated system at higher
volume fractions.
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