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Eigenvalue Solution of
Thermoelastic Damping in Beam
Resonators Using a Finite
Element Analysis
A finite element formulation is developed for solving the problem related to thermoelastic
damping in beam resonator systems. The perturbation analysis on the governing equa-
tions of heat conduction, thermoleasticity, and dynamic motion leads to a linear eigen-
value equation for the exponential growth rate of temperature, displacement, and veloc-
ity. The numerical solutions for a simply supported beam have been obtained and shown
in agreement with the analytical solutions found in the literature. Parametric studies on
a variety of geometrical and material properties demonstrate their effects on the fre-
quency and the quality factor of resonance. The finite element formulation presented in
this work has advantages over the existing analytical approaches in that the method can
be easily extended to general geometries without extensive computations associated with
the numerical iterations and the analytical expressions of the solution under various
boundary conditions. �DOI: 10.1115/1.2748472�
Keywords: thermoelastic damping, beam resonator, eigenvalue, finite element method
Introduction
Thermoelastic damping is a phenomenon related to the irrevers-

ble heat dissipation induced by the coupling between heat trans-
er and strain rate during the compression and decompression of
n oscillating system. In the past few years interest in both experi-
ental and theoretical investigations of thermoelastic damping in-

reased rapidly, especially in the research arena related to micro-
lectromechanical systems �MEMS� and nanoelectromechanical
ystems �NEMS� �1–3�. This is mainly prompted by the pursuit of
ow-energy dissipation or high-quality factor in designing and fab-
icating high-precision actuators, sensors, and mechanical filters
4�.

The earliest work related to thermoelastic damping can be
raced back to Zener �5� who established a general theory of ther-

oelastic damping and derived an equation to relate the energy
issipation, or “internal friction” Q−1 �fraction of energy loss per
adian of vibration� to the material properties and geometric pa-
ameters of a thin beam under bending. However, Zener’s deriva-
ion involved some mathematical and physical simplifications. For
xample, the boundary conditions were expressed in a trigonomet-
ic series and a truncation was made on the series to the first term
nly. In addition, an assumption was involved in the derivation
ased on the fact that the “relaxation strength” �the difference
etween the adiabatic and isothermal values of the equivalent
lastic modulus� is much less than 1 for a thin beam.

Lifshitz and Roukes �4�, however, indicated that these simplifi-
ations are actually not necessary. They derived an exact expres-
ion of the solution for the same problem from the equations of
otion and the fundamental theories of thermoelasticity, despite

he fact that in most situations Zener’s solution is an excellent
pproximation to the exact solution.

Although Lifshitz and Roukes’ solution was quite successful in
redicting thermoelastic damping of beam systems, it is question-
ble to apply the same solution to other geometries such as
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clamped plates, which have wide applications in micropumps and
pressure sensors, and whose mode shapes vary across the plate
width. Nayfeh and Younis �6� extended the technique to these
cases and derived an analytical solution for the problem involving
microplates of finite width.

Zener’s classical work and Lifshitz and Roukes’ solution tech-
nique were also successfully extended to solve the problem in-
volving in-plane vibration of thin rings �7�. These rings are com-
monly used in fabrication of rate sensors �gyroscopes� �8�.

In addition to the investigations of geometric effects, some re-
searchers also indicated the importance of the boundary condi-
tions. For example, Sun et al. �9� studied thermoelastic damping
in beam resonators subjected to various boundary conditions, by
combining the finite sine Fourier transformation method and the
Laplace transformation method in the normal mode analysis.

All the above research activities were based on analytical ap-
proaches using the continuum theories. The advantage of the ana-
lytical approaches is obvious in that the results can be expressed
either in the explicit form of an exact formula or as a set of
nonlinear equations implicitly. In the latter case, the exact results
can still be found via numerical iterations. However the disadvan-
tages of the analytical approaches are also obvious: they can only
deal with simple geometries such as beams and plates under uni-
form boundary conditions. The rapid advancements in MEMS
technologies require designs and fabrications of components in-
volving more and more complicated geometries subjected to in-
homogeneous boundary conditions, with which an analytical ap-
proach will be impractical and a finite element discretization
scheme will be a natural tool to overcome the associated difficul-
ties.

Silver and Peterson �10� recently proposed using the finite ele-
ment method to solve the thermoelastic damping problem for
beams. They formulated the problem in a fashion similar to the
finite element treatment on linearly viscoelastic structures origi-
nally suggested by Segalman �11�. In particular, the elastic stiff-
ness matrix was augmented by a differential stiffness matrix,
which was evaluated by a Fourier transform. This was among the

first efforts applying the discretization method to solve a ther-
moelastic damping problem �although some earlier works exist in
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he literature �12��. However, the determination of the differential
tiffness matrix requires the evaluation of Fourier transform in an
ntegral form. In addition, although in principle one can extend
his method to deal with geometries other than beams and trusses,
t is unclear whether the method will be efficient and what kind of
umerical accuracy it can achieve.

In the current work, a different approach is taken to solve the
hermoelastic damping problem using a finite element formula-
ion. In this approach, a perturbation of the temperature field is
xplicitly applied to the governing equations associated with heat
ransfer, thermoelasticity, and structural vibration. This results in
n eigenvalue equation with the imaginary part of the eigenvalue
epresenting the frequency of the harmonic vibration and the real
art representing the decaying rate of the amplitude. The advan-
age of the method lies in that it is very easy to extend the same
ormulation to solve a problem with arbitrary geometry and com-
licated boundary conditions, although only those results related
o the two-dimensional formulation are presented in the current
ork.
The method is actually analogous to the one recently used in

he formulation of thermoelastodynamic instability �TEDI� prob-
ems involving frictional heating, in which the frictionally excited
hermoelastic instability is coupled with dynamic vibration
13,14�. For the thermoelastic damping problem, once the prob-
em is linearized �basically assuming that the temperature varia-
ions are small compared with the mean absolute temperature�, it
ould be reduced to an eigenvalue problem very similar to TEDI,

xcept that there is a thermoelastic coupling term in the heat con-
uction equation. The implementation of the finite element formu-
ation on the thermoelastic damping problem is therefore a natural
xtension of the method developed for TEDI with some necessary
odification.

Method
To demonstrate the proposed methodology, a finite element for-
ulation of the problem in a general two-dimensional geometry is

eveloped based on the fundamental theories of thermoelasticity
nd structural dynamics. Then the method is applied to the sim-
lified case of a thin beam model so that the numerical results can
e compared to the existing analytical solutions available in the
iterature.

2.1 The Heat Transfer Problem. The two-dimensional heat
iffusion equation involving thermoelastic damping can be written
s the following differential equation

k� �2T

�x2 +
�2T

�y2� = �Cp
�T

�t
+

E�T

1 − 2�

�ē

�t
�1�

here k, � and c, E, �, and � are thermal conductivity, density,
pecific heat of mass, elastic modulus, thermal expansion coeffi-
ient, and Poisson’s ratio, respectively; ē is the dilatation strain
ue to the thermal effect

ē = �xx + �yy + �zz �2�

here �xx, �yy, �zz are the strains in the x, y, and z directions. We
ssume an exponentially growing perturbation solution of the
orm

T�x,y,t� = T0�x,y� + R�ebt��x�� �3�

here b is a complex exponential growth rate; T0 is the steady-
tate solution and satisfies the heat diffusion equation; and R rep-
esents the real part of a complex number. Applying the standard
alerkin finite element formulation results in a matrix equation in

he following form
K� + bH� + bNFU = 0 �4�

here the elemental matrices can be expressed as

ournal of Vibration and Acoustics

ded 27 Jul 2007 to 130.253.128.154. Redistribution subject to ASM
Ke =	
�

k� �N

�x

�NT

�x
+

�N

�y

�NT

�y
�dx dy �5�

He =	
�

�CpNNTdx dy �6�

F = �F1F2F3F4� �7�

where

Fi =
E�T0

1 − 2�
�dNi

dx
+

dNi

dy
��1 1� �8�

In the above integrals N�x ,y� is the shape function and Ni �i
=1,2 ,3 ,4� represents the four terms in the shape function N�x ,y�.
�The finite elements used here are two-dimensional quadrilateral
elements.� Note that the problem is linearized assuming small
perturbation such that the temperature T in the thermoelastic cou-
pling term has been replaced by the mean absolute temperature
T0.

2.2 Equation of Motion. The equations of motion for a two-
dimensional elastic body are as follows

��xx

�x
+

��xy

�y
= �

�2ux

�t2 �9�

��yy

�y
+

��xy

�x
= �

�2uy

�t2 �10�

where �xx, �xy, and �yy represent the stresses; and ux and uy are
the displacements.

2.3 Thermoelasticity. For a two-dimensional problem, either
the plane-strain or plane-stress assumptions can be made. For sim-
plicity, let us consider the plane-strain assumption only. The
plane-stress problem can be formulated in a similar fashion. The
constitutive law of thermoelasticity for an isotropic material is

��xx �yy �xy�T = C��xx �yy �xy�T − DT �11�

where

C =
E

�1 + ���1 − 2��
1 − � � 0

� 1 − � 0

0 0 1/2 − �
� �12�

and

D =
E�

�1 − 2��
1

1

0
� �13�

��� is the strain vector, which can be expressed in the matrix form
in terms of the nodal displacement vector U. The result is

��xx �yy �xy�T = BU �14�

and

B = �B1 B2 B3 B4� �15�

in which

Bi = 

dNi

dx
0

0
dNi

dy

dNi dNi �, i = 1,2,3,4 �16�
dy dx

We assume the displacement in the perturbation form as
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u�x,y,t� = u0�x,y� + R�ebtU�x,y�� �17�

nd velocity as

u��x,y,t� = u0��x,y� + R�ebtU��x,y�� �18�

hese components have been assumed in the above expressions
or the purpose of reducing the otherwise second-order eigenvalue
roblem �which is difficult to solve� to a first-order problem. �A
econd-order eigenvalue problem would be unavoidable if the ve-
ocity was not expressed in a perturbed form.�

Applying Eqs. �9�–�18�, the equations of motion can be reduced
o a matrix equation

LU − G� + bMU� = 0 �19�

here the elemental matrices are obtained as

Le =	
�

BTCB dx

Ge =	
�

BTDN dx dy

Me =	
�

�NNTdx dy �20�

2.4 Eigenvalue Equation. Note that we have a relation be-
ween the displacement and velocity perturbations as

U� = bU �21�

ombining Eqs. �4�, �19�, and �21� yields

�
K 0 0

G − L 0

0 0 I
� − b
H NF 0

0 0 M

0 I 0
�
�

U

U�
� = 0 �22�

r

ÃX = bB̃X �23�

here

Ã = 
K 0 0

G − L 0

0 0 I
� ; B̃ = 
H NF 0

0 0 M

0 I 0
� ; X = ��,U,U��T

�24�

nd I is an identity matrix. This is a generalized eigenvalue equa-
ion. The eigenvalue of the equation is the growth rate b and the
igenvector is �� ,U ,U��T, i.e., nodal temperature, displacement,
nd velocity.

The effect of thermoelastic damping on the attenuation of the
ibration can be expressed in the quality factor Q defined as

Q =
1

2
� I�b�

R�b�� �25�

here R�b� and I�b� represent the real part and the imaginary
art of b, respectively.

Numerical Results

3.1 Existing Analytical Solutions. Zener’s solution �5� for
hermoelastic damping in a thin beam can be approximated as

Q−1 = �E
	0


�26�

1 + �	0
�2

here
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�E =
E�2T0

�Cp
�27�


 is the relaxation time determined by


 =
h2�Cp

�2k
�28�

and 	0 is the undamped natural frequency for the relevant mode.
For a simply supported beam, the first natural frequency is

	0
2 =

�4Eh2

12�L4 �29�

Lifshitz and Roukes’ precise solution �4� can be expressed in the
following form

Q−1 =
E�2T0

�Cp
� 6

�2 −
6

�3

sin � + sinh �

cos � + cosh �
� �30�

where

� = h�	0�Cp

2k
�31�

3.2 Simple Convergence Tests. To validate the method pro-
posed in this work, finite element analysis was performed on a
simply supported thin beam to compute its eigenfrequency and the
associated quality factor of resonance.

The analysis was performed using the two-dimensional quadri-
lateral plane-strain elements as formulated aforementioned. The
geometric parameters �as shown in Table 1� were obtained from
the benchmark eigenvalue problem used by the commercial soft-
ware ANSYS. Although MEMS devices have much smaller sizes
and the thermoelastic damping is size dependent �it can be shown
that the quality factor is a function of h3/2L−1�, the conclusions
obtained from this geometry can apply to other problems at dif-
ferent size scales as well, as long as the results are appropriately
normalized. The aspect ratio of the beam geometry �thickness di-
vided by length� in the current model is 1:40 and Poisson’s ratio
of the material is set to zero for approximating the thin beam. The
length was discretized into 200 elements in the standard model
and ten elements were used in the thickness direction for reducing
the mesh size. This is reasonable because of the small aspect ratio
of the beam geometry. Increasing the element numbers beyond
these values has proved difficult due to the limitation of the avail-
able computer facilities. The first natural frequency of the beam in
the simplified case without damping �this can easily be achieved
by setting T0=0� was compared to Eq. �29�, showing good agree-
ment �Fig. 1�. When the thermoelastic damping is present �T0
=300 K�, deviations of the results from Eq. �29� for large thick-
nesses have been observed.

A convergence test was also performed to study the effects of
element number on both quality factor and frequency, as shown in
Fig. 2. It can be seen that there is a significant error in the result
when the element number is less than 50 �the element length is

Table 1 Beam properties of the standard model used in the
analysis

Young’s modulus, E �Pa� 2.01011

Poisson’s ratio, � 0
Thermal expansion coefficient, � �K−1� 1.210−5

Thermal conductivity, k �W/m·K� 42.0
Specific heat, Cp �J /kg·K� 2.0103

Density, � �kg/m3� 7800
Temperature, T �K� 300
Thickness, h �m� 0.05
Length, L �m� 2.0
larger than the beam thickness in this case�. However, when the
element number is greater than 100, little changes have been ob-
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erved and the results are almost the same as the asymptotic so-
ution. In fact, the numerical error associated with an insufficient
lement number can be easily explained by shear locking of the
lements. It is known that bilinear quadrilaterals have a very poor
ending performance and are prone to shear locking. This is only
voided if the length of a single element becomes much smaller
han the beam thickness, which is confirmed by this computation.

3.3 Comparison Between the Numerical and Analytical
odels. The quality factor was also compared with the existing

nalytical results from Zener’s approximation and Lifshitz’s solu-
ion for thin beams.

The parameters involved were normalized based on the same
erminologies used by Lifshitz et al. �4� The variability in the
arameters was achieved by varying the beam thickness. The re-
ult is presented in Fig. 3. The finite element solutions are in
greement with the analytical solutions, especially for small thick-
esses. They also predict the identical peak value of the solution
urve, which has validated the finite element formulation pre-
ented above. The differences at large � are induced by two
ources: �1� The discretization scheme involved in the finite ele-
ent method inevitably results in numerical inaccuracies. Due to

he consideration of minimizing the computational effort, only
00 elements were used in the length direction and only ten ele-
ents were used in the thickness direction. The mesh might not be

ufficiently fine for accurate computation at large �. �2� The theory
f elasticity differs from the beam theory in that it considers the
hear variation in the thickness direction as well �although the

ig. 1 Comparison of the finite element solution and exact so-
ution for frequency of a simply supported thin beam. The the-
retical solution corresponds to the undamped natural

requency.
ig. 2 Convergence test showing the quality factor „*… and fre-
uency „�… as functions of element number
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thickness is very small relative to the length in the present prob-
lem�. Again, the numerical error associated with an insufficient
element number as stated in the first reason can be explained by
shear locking of the bilinear elements as already noted. This error
can be reduced by using more elements in the length direction or
by introducing nonlinear element types.

3.4 Effects of Various Model Parameters. Parametric stud-
ies were performed to investigate the effects of various parameters
on the first frequency and quality factor of resonance. Figure 4
displays the effect of beam aspect ratio. Clearly, increase in thick-
ness causes an increase of stiffness, and thus raises the eigenfre-
quency. However, the quality factor has a minimum value at a
certain aspect ratio and therefore special considerations should be
taken for design of beams near this minimal Q. Figure 5 shows the
quality factor/frequency as functions of temperature. It is evident
that the thermoelastic damping does not significantly affect the
resonant frequency, however, the quality factor decreases when
the temperature increases. At high temperatures, the quality factor
may drop significantly and therefore more energy will be dissi-
pated compared to the low-temperature condition. This implies the
importance of considering thermoelasticity in the design of
MEMS devices working at high ambient temperatures.

Figure 6 shows the effect of thermal diffusivity. Again the
changes in thermal properties do not have significant effects on
the frequency of vibration; however, the quality factor can be
affected remarkably, implying that it is essential to select materi-
als of small thermal diffusivity in order to improve the quality
factor. Figure 7 is the effect of Poisson’s ratio. Clearly, the quality

Fig. 3 Comparison of the normalized quality factor with the
existing analytical solutions
Fig. 4 Frequency „�… and quality factor „*… of vibration as
functions of beam aspect ratio
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actor increases with Poisson’s ratio. In Fig. 8, the quality factor
ecreases when the material stiffness increases. All the above re-
ults are consistent with the existing analytical results found in the
iterature.

Conclusions
The thermoelastic damping problem involved in beam resona-

ors has been solved using a combination of finite element method
nd eigenvalue formulation. By applying a small perturbation of
he temperature, displacement, and velocity fields, the governing
quations were reduced to an eigenvalue equation, in which the
rowth rate of the eigenvalue contains information leading to the

ig. 5 Frequency „�… and quality factor „*… of vibration as
unctions of temperature

ig. 6 Frequency „�… and quality factor „*… of vibration as
unctions of thermal diffusivity
ig. 7 Frequency „�… and quality factor „*… of vibration as
unctions of Poisson’s ratio
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frequency and damping factor of vibration. The finite element
method was then applied to obtain an approximation solution to
the eigenvalue equation. The numerical results obtained from the
finite element method are in agreement with the existing analyti-
cal solutions from several different sources. Parametric studies
have also shown the importance of a variety of geometric and
material properties on the resonant frequency and the quality fac-
tor. These results are again consistent with the results reported by
former researchers. Compared to analytical approaches of the
problem, the finite element method is superior in that the solutions
of the problem can be determined for complicated geometries and
boundary conditions. For example, the same formulation can also
be extended to the cases in which the geometry is three dimen-
sional and the boundary conditions are nonuniform, where in most
situations analytical solutions will be extremely difficult to obtain.
Detailed discussion about this extension will possibly form a sec-
ond paper on the work in the near future.

Nomenclature
b � exponential decaying rate

Cp � specific heat capacity
e � dilatation strain
E � Young’s modulus �or elastic modulus�
h � beam thickness
k � thermal conductivity
L � beam length
Q � quality factor
t � time

T � temperature
T0 � mean temperature
u � displacement
� � thermal expansion coefficient
� � strain
� � stress
� � density
� � Poisson’s ratio

�E � relaxation strength of Young’s modulus

 � relaxation time
	 � natural frequency

	0 � undamped natural frequency
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