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Abstract. Thermoelastic damping and fluid damping may collectively
affect the resonant behaviors of silicon resonators. A finite element
model is developed to predict the characteristics of the out-of-plane reso-
nance, and the results are verified by experiments. The implementation
of the perturbation method leads to an eigenvalue equation, from which
the resonant frequency and the quality factor can be evaluated. The fluid
damping problem is formulated by augmenting the governing equation
with a linear damping term, whose coefficient is inversely determined
from the experimental correlations. With the incorporation of the fluid
damping term, the computational prediction achieves a good agreement
with the experiment. The same method can also be extended to study
the in-plane vibration of beam resonators. © 2009 Society of Photo-Optical In-
strumentation Engineers. �DOI: 10.1117/1.3129830�
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Introduction

arious energy dissipation mechanisms exist in microelec-
romechanical systems �MEMS� and nanoelectromechani-
al systems �NEMS�. These mechanisms include viscous
ffects,1 anchor losses,2 squeeze film damping,3 nonlinear
coustic effects,4 and thermoelastic damping.5

Thermoelastic damping involves the coupling between
hermoelasticity and structural dynamics, and it is strongly
vident that this mechanism is a dominant source of intrin-
ic damping in MEMS and NEMS resonators operating at
igh frequencies.5 The earliest work related to thermoelas-
ic damping can be traced back to Zener,6 who established a
eneral theory of thermoelastic damping and derived an
pproximation equation to relate the energy dissipation.
ifshitz and Roukes7 later improved the method and de-

ived an exact solution for the same problem from the equa-
ions of motion and thermoelasticity. Nayfeh and Younis8

erived an analytical solution for the problem involving
icroplates of finite width. The same analytical approaches
ere also successfully applied to other geometries, includ-

ng thin rings9,10 as well as circular thin-plate
esonators.11,12

The implementation of the finite element scheme on the
ormulation of thermoelastic damping13,14 leads to a more
fficient tool when the system has a complex geometry or
onhomogeneous boundaries. Yi’s group further improved
his method for beams,15 plates,16 and axisymmetric rings17

nd derived a generalized eigenvalue scheme for the prob-
em based on the Fourier reduction.18 The method was
nalogous to the formulation of thermoelastodynamic insta-
ility �TEDI� in automotive applications19 and was success-

932-5150/2009/$25.00 © 2009 SPIE
. Micro/Nanolith. MEMS MOEMS 023010-
fully implemented to solve the resonator damping problems
involved in both two-dimensional �2-D� and three-
dimensional �3-D� structures.

On the other hand, fluid damping, which may include
both viscous damping and squeeze film damping, is also an
important damping mechanism for resonators operating in
viscous fluid, such as air and water. The resonance charac-
teristics of MEMS under fluid damping have been investi-
gated by several research groups. For example, Basak et
al.20 developed a fully 3-D finite element–based fluid struc-
ture interaction model to predict the hydrodynamic loading
of microcantilevers in viscous fluids. Inaba et al.21 analyzed
the resonant frequency of a cantilever vibrated photother-
mally in water and compared the experimental results with
the theoretical predictions. Naik et al.22 investigated the
effects of liquid properties and gap height on the dynamic
response of a resonant cantilever in terms of added mass
and viscous damping coefficient. A more comprehensive
work, which integrated the coupling of hierarchical fluid
models with electrostatic and mechanical models for
MEMS, was carried out by De and Aluru.23 Hao et al.24

investigated the air damping effect in a bulk microma-
chined tilt mirror by using both the analytical and numeri-
cal methods.

However, the computational models developed in the
preceding research were predominantly based on the tran-
sient solution scheme, which requires a very small time
step in the presence of fluid damping. This typically results
in very intensive numerical iterations. In addition, the mode
patterns altered by the shear tractions of viscous fluid may
impose additional constraints on the heat flow induced by
thermoelastic damping. This will lead to a feedback loop
between the two damping mechanisms. A detailed explana-
tion of this coupling process is not yet known.

Here, we seek a methodology that leads to a computa-
Apr–Jun 2009/Vol. 8�2�1
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ionally reduced model and that can be used to investigate
he collective effect of thermoelastic damping and fluid
amping in resonator systems. This requires the lineariza-
ion of the governing heat transfer and dynamics equations
s well as the formulation of an eigenvalue equation from
hich the resonance characteristics can be predictively
odeled.

Experimental Procedure
he fabrication process sequence of the required MEMS

esonators is shown in Fig. 1. The resonator structure is first
efined by selective anisotropic etching of the device sili-
on layer in an aqueous potassium hydroxide �KOH� solu-
ion. This anisotropic etching resulted in a 54.7-deg angle
or the etched sidewalls, defined by the crystalline structure
f the utilized �100� silicon wafers. A thin ��100 nm� ther-
ally grown layer of silicon dioxide was used as the mask

n this step. The beams were then undercut and released in
ydrofluoric acid �HF� by etching the underlying silicon
ioxide. The entire fabrication process is shown schemati-
ally in Fig. 2.

Beam resonators with different dimensions were fabri-
ated on silicon-on-insulator �SOI� substrates with different
evice layer thicknesses. Figure 3 shows the scanning elec-
ron microscope �SEM� view of a fabricated 100-�m-long,
0-�m-wide �on top�, and 9-�m-thick beam resonator with
500-nm capacitive transduction gap. The capacitive trans-
uction gap lies between the silicon handle layer of the SOI
ubstrate and the beam carved in the SOI device layer.
herefore, the size of the gap is determined by the thick-
ess of the buffer oxide �BOX� layer of the starting SOI

ig. 1 Schematic of the beam structure under investigation: �a� side
iew; �b� cross section.

Fig. 2 Process flow used for fabrication of the beam resonators.
. Micro/Nanolith. MEMS MOEMS 023010-
substrate and can be much smaller than the lithography
limits �potentially as small as a few nanometers�.

To measure the resonant properties, the fabricated beam
resonators were operated in a one-port configuration in
which the SOI handle layer acted as the actuation electrode.
A DC bias voltage �Vbias� in addition to the AC actuation
signal from the network analyzer were applied to the
handle layer while the output current was collected from
the resonator body. To separate the DC and AC paths to the
power supplies, the DC bias was applied through a large
resistor �100 k�� and the AC signal was applied through a
relatively large capacitor �1 �F�.

The fluctuating electrostatic force applied by the sub-
strate to the beam structure caused vertical �out of plane�
mechanical vibrations in the beam that were amplified at
their mechanical resonant frequencies �2 to 6 MHz in this
work, depending on the beam dimensions�. The current in-
duced in the beam is a function of the DC bias voltage and
the vibration amplitude of the resonator. The frequency re-
sponse of the resonators was measured by connecting the
resonator body to the input of a network analyzer that mea-
sured and graphed the resulting output current as a function
of frequency.

3 Computational Method

3.1 Analytical Approach

Lifshitz and Roukes7 derived a closed form solution for the
thermoelastic damping effect on beam resonators, shown
here:

Q =
�Cp�2

6E�2T0�1 −
sin � + sinh �

��cos � + cosh ���
, �1�

where

� = h��0

2�
�1/2

. �2�

Q is the quality factor, � is the material density, � is the
thermal expansion coefficient, Cp is the specific heat capac-
ity, T0 is the mean temperature, h is the beam thickness, and
� is the thermal diffusivity. For a simple beam system, the
first undamped natural frequency is

Fig. 3 SEM image of the experimental setup of a MEMS beam
resonator with a 0.5-�m transduction gap.
Apr–Jun 2009/Vol. 8�2�2
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0 = �� Eh2

12�L4�1/2
, �3�

here � is a coefficient determined by the boundary con-
traints, E is Young’s modulus, and L is the beam length.
he value of � is 	2, 3.52, 22.4 for simply supported, can-

ilever, and clamped-clamped conditions, respectively.25

etting

�Q

��
= 0, �4�

ields −3��cos �+cosh ��2+3�sin �+sinh ���cos �+cosh ��
��sinh2 �−sin2 ��=0, which gives �=2.2246. This corre-

ponds to the lowest Q factor:

min =
2.0236�cp

E�2T0
. �5�

.2 Finite Element Formulation for Thermoelastic
Damping

or a two-dimensional �2-D� beam structure, the heat con-
uction process with thermoelastic damping is governed by
he following differential equation:

� �2T

�x2 +
�2T

�y2� =
�T

�t
+


T0

�Cp

��̄

�t
, �6�

here �̄ is the dilatation strain or the “bulk strain” defined
y

= �x + �y + �z, �7�

n which �x, �y, and �z are the strain components in the x, y,
nd z directions, respectively. 
 is a term related to the
hermal expansion, which can be expressed as

= �
E�

�1 − 2��
, plain-strain

E�

�1 − ��
, plain-stress	 , �8�

here � is Poisson’s ratio of the material. The equations of
otion for a 2-D elastic body are given here:

�
xx

�x
+

�
xy

�y
= �

�2ux

�t2 , �9�

�
yy

�y
+

�
xy

�x
= �

�2uy

�t2 . �10�

n the preceding equations, 
xx, 
xy, and 
yy represent the
omponents of stress tensors, and, ux and uy are the com-
onents of displacement vectors. The constitutive law of
hermoelasticity can be written as
. Micro/Nanolith. MEMS MOEMS 023010-
�
xx


yy


xy
	 = C��xx

�yy

�xy
	 − DT , �11�

where for plain strain,

C =
E

�1 + ���1 − 2��
1 − � � 0

� 1 − � 0

0 0 1/2 − �
� , �12�

and for plain stress,

C =
E

�1 − �2�
1 � 0

� 1 0

0 0 �1 − ��/2
� . �13�

In both cases,

D = 






0
� . �14�

Assume that there exists a perturbation solution of the form

�
T = R�ebt�

u = R�ebtU

�u

�t
= R�ebtV
 	 , �15�

where b is a complex exponential growth rate, and R rep-
resents the real part of a complex number. Applying the
standard Galerkin finite element formulation results in two
matrix equations in the following form:

�K + bH�� + bFU = 0 , �16�

and

LU − G� + bMV = 0 , �17�

where K, H, F, L, G, and M are coefficient matrices de-
termined by the material properties and the shape functions.
�see Ref. 15 for the detailed integral expressions for these
matrices.� �, U, and V represent the nodal values of T, U,
and V.

Note that there exists an additional relationship between
the displacement and velocity perturbations, shown here:

V = bU . �18�

Combining Eqs. �16�–�18� yields

�
K 0 0

G − L 0

0 0 I
� − b
H F 0

0 0 M

0 I 0
�	
�

U

V
� = 0, �19�

or

�Ã − bB̃�� = 0, �20�

where
Apr–Jun 2009/Vol. 8�2�3
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˜ = 
K 0 0

G − L 0

0 0 I
�: B̃ = 
H NF 0

0 0 M

0 I 0
�: � = ��,U,V�T,

�21�

nd I is an identity matrix. This is a generalized eigenvalue
quation in which the eigenvalue is the growth rate b and
he eigenvector is �� ,U ,V�T, i.e., the nodal temperature,
isplacement, and velocity.

The quality factor Q defines the attenuation of the reso-
ance and is determined by

=
1

2
� I�b�
R�b�

� , �22�

here R�b� and I�b� represent the real part and the imagi-
ary part of the growth rate b, respectively.

.3 Finite Element Formulation of Collective
Thermoelastic and Fluid Damping Effects

he fluid drag acting on the beam resonator is caused by
he skin friction force and the pressure drop in the fluid
ow. For laminar flow over the thickness direction of beam,

he friction drag coefficient is determined by

D =
FD

1

2
� fVy

2A

=
1.33
�Re

, �23�

here CD is the drag coefficient, FD is the drag force, Vy is
he velocity component in the y direction, � f is the fluid
ensity, A is the surface area, and Re is the Reynolds
umber.26 It can be proved that the equivalent shear stress
f imposed on the 2-D model is determined by

f = 1.33�1/2Vy
3/2h1/2�1/2w−1, �24�

here � is the fluid dynamic viscosity, h is the beam thick-
ess, and w is the beam width. For the out-of-plane motion
f the beam, however, the velocity is orthogonal to the
eam width, and therefore the pressure drag should be
ominant. From the momentum consideration, we know
hat

p � �Vy
2. �25�

ere, we manage to linearize the fluid damping term by
ssuming that

= � f + �p � �Vy , �26�

here � is a coefficient determined by various parameters
ncluding the fluid properties, the beam aspect ratio, and the
eam velocity components. Although the dependence of the
hear tractions on the velocity are nonlinear, as shown in
qs. �24� and �25�, in the vicinity of the equilibrium state,
e may linearize the problem so that the eigenvalue

cheme can be implemented. To fully incorporate the non-
inear effects, one must resort to the transient simulation in
he time domain, which would be computationally prohibi-
ive.
. Micro/Nanolith. MEMS MOEMS 023010-
According to Eq. �25� and considering that �p is a domi-
nant term here, � should be approximately proportional to

the mean beam velocity V̄y, which is related to the product
of the resonant amplitude and the resonant frequency. From
the fundamental beam theory, the deflection of a horizontal
beam subjected to a uniform vertical traction is given by

d �
L4

h3 . �27�

From Eq. �3�, we know the resonant frequency:

�0 �
h

L2 . �28�

Therefore,

� �
L2

h2 , �29�

and we need to modify Eq. �26� as

� = �
L2

h2 Vy , �30�

where � is a nonlinear function of the beam width w as well
as the boundary conditions and other factors. A theoretical
derivation of the analytical expression of � will be difficult,
and therefore in the present study, we inversely determine
its value from the experimental correlations. The deter-
mined � can then be used for predictions of resonant prop-
erties for beams operating in other conditions.

Once the fluid damping coefficient � in Eq. �30� is
known, the external traction � can be incorporated into the
equation of motion, and the resulting matrix equation will
reflect the fluid damping effect. Particularly, Eq. �17�
should be modified as the following form:

LU − G� + bMV + PV = 0 , �31�

where P is the fluid damping coefficient matrix, whose el-
emental matrix is given by the following integral expres-
sion:

Pe = �
�

�
L2

h2 NNTdx dy , �32�

where N is the shape function. Accordingly, the eigenvalue
�19� should be modified as

�
K 0 0

G − L P

0 0 I
� − b
H F 0

0 0 M

0 I 0
�	
�

U

V
� = 0, �33�

to incorporate the fluid damping term.

4 Results

4.1 Analytical Solutions versus Finite Element
Results

To validate the finite element method, the eigenfrequency
and the Q factor were obtained and compared to the ana-
lytical solutions. The analysis was performed using the 2-D
Apr–Jun 2009/Vol. 8�2�4
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uadrilateral plane-strain elements as formulated earlier.
he silicon material properties were retrieved from the
OMSOL materials library27 and are listed in Table 1. The
eam length was discretized into 100 elements in the model
o prevent shear locking of the bending performance.

eanwhile, 10 elements were used in the thickness direc-
ion. Increasing the element number beyond these values
as proved difficult due to the computer capacity available.
he analytical solution for the first natural frequency of the
eam was computed using Eq. �3�. According to the com-
utational results presented in Table 2 and Fig. 4, it is seen
hat the analytical and numerical solutions agree very well
n most situations. For the beam length below 50 microns,
he discrepancy is relatively significant, because the ana-
ytical solution was derived from the beam theory, which is
napplicable to short beams. It is also found that changing
oisson’s ratio of the material ��=0 versus �=0.27� does
ot affect the resonant frequency very much.

Comparisons of the Q factor also reveal that the analyti-
al solution and the finite element result agree very well
hen Poisson’s ratio is set to zero �see Fig. 5�. When a

ealistic Poisson’s ratio ��=0.27� is used, however, the dis-
repancy is quite significant. This is because Lifshitz’s so-
ution does not include the shear stress effects induced by a
onzero Poisson’s ratio. Consequently, the quality factor is
nderestimated. Despite the different Q values predicted,
he beam length associated with the minimum Q is consis-
ent among these models, which stays in the vicinity of
80 �m.

Table 1 Silicon properties used in the models.

oung’s modulus, E �Pa� 1.31�1011

oisson’s ratio 0.27

hermal expansion coefficient, � �K−1� 4.15�10−6

hermal conductivity, k �W/m·K� 163

pecific heat �J/Kg·K� 703

ensity, � �kg/m3� 2330

emperature �K� 300

able 2 Comparisons of resonant frequency between experiments
nd theoretical predictions.

Beam length
��m�

Finite element
frequency

�MHz�

Analytical
solution frequency

�MHz�
Test frequency

�MHz�

100 6.915 6.945 5.438±0.149

150 3.17 3.087 2.679±0.055

200 1.810 1.737 1.615±0.070
. Micro/Nanolith. MEMS MOEMS 023010-
4.2 Correlations between Experiments and
Computational Results

Comparisons between the experiment results and the pre-
ceding theoretical predictions in Table 3 show that the reso-
nant frequency can be predicted with good accuracy by
either the analytical formula or the finite element analysis.
According to the same table, when the beam lengths are
100, 150, and 200 �m, the finite element model predicts
resonant frequencies of 6.915, 3.17, and 1.810 MHz, re-
spectively. Meanwhile, the test results are 5.438, 2.679, and
1.615 MHz, respectively. The test results have been aver-
aged over the beams with various widths from
15 to 20 �m, and both the mean values and the standard
deviations are reported in the same table. The discrepancy
between the experiments and the theoretical predictions
could be caused by the following reasons:

1. The cross section of the beam sample is trapezoidal
instead of a rectangular shape assumed in the model.

2. A 2-D geometry is assumed, whereas the real device
has a finite width, which may impose nonnegligible
boundary constraint across the transverse direction.

3. The realistic boundary constraints at the two ends are

Fig. 4 Comparisons between the finite element solutions and the
analytical solutions for the resonant frequency.

Fig. 5 Comparisons between the finite element solutions and the
analytical solutions �without involving fluid damping� for the quality
factor.
Apr–Jun 2009/Vol. 8�2�5
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more complicated than the clamped-clamped assump-
tion.

4. There is an inaccuracy in measuring the beam
parameters—for instance, the measurement tolerance
of the beam thickness turns out to be �0.5 micron,
which could result in an error of �6% for the com-
puted resonant frequency.

5. The material properties assumed in the model may
not be exact. Despite the discrepancy, the predicted
results are not far from the test data and should be
considered acceptable. The maximum deviation of
the predicted values is around 12% to 27% in com-
parison with the test result, with a longer beam yield-
ing a smaller error.

For the quality factor, however, the original model
ould not make good predictions if the fluid damping term
ere not included. In fact, the predicted Q factor is about

able 3 Comparisons of quality factor between experiments and
heoretical predictions.

Beam
length ��m�

Beam width
��m�

Experi-
ment Q
factor �

Predicted Q based on
averaged �

100 20 295 9.96 423

100 10 232 12.7 281

100 5 174 17.4 175

100 2 122 24.9 116

100 1.5 104 29.5 91.7

150 20 116 5.27 91.4

150 10 66 9.48 59.6

150 5 40 15.8 36.5

150 2 22 28.8 24.0

150 1.5 21 30.1 18.9

200 20 40 5.10 30.2

200 10 22 9.32 19.5

200 5 11 18.6 11.9

200 2 8 25.6 7.78

200 1.5 5 41.0 6.13

Table 4 Determination of

Beam width ��m� 20 10

Averaged � 6.78±2.76 10.5±1
. Micro/Nanolith. MEMS MOEMS 023010-
one or two orders of magnitude higher than the experimen-
tal results �compare Fig. 5 and the third column in Table 3�.
This implies that the fluid damping, rather than thermoelas-
tic damping, is a dominant damping source in these tests.
To include the fluid damping effects, the damping coeffi-
cient � in Eq. �30� was estimated in each experiment, and
the results were then averaged over all three beam lengths
for each beam width. �Note that � is independent of beam
length or beam thickness.� The correlation results are de-
tailed in Tables 3 and 4. In Table 3, the � value was com-
puted for each test based on the finite element analysis.
These values were averaged to obtain the mean � for each
of the beam widths, as shown in Table 4, which in turn
predicts the Q factors for different beam lengths, as shown
in the last column of Table 3. According to Table 4, it is
seen that the correlated � shows small variations among the
different beam lengths. For example, �=17.3 with a stan-
dard deviation of 1.43 is obtained for beam width of 5 �m,
indicating that Eq. �30� is a good fit for the fluid damping
term in the problem of interest. The averaged damping co-
efficient is then used to compute the quality factor for dif-
ferent beam lengths and widths, and the results are shown
in Fig. 6. Clearly, the experiments and the fluid damping
model achieve good agreements.

5 Conclusions
The combined effect of thermoelastic damping and fluid
damping was investigated both numerically and experimen-
tally using a silicon MEMS beam resonator. By applying a
small perturbation, the governing differential equations
were converted to an eigenvalue equation, in which the
eigenvalue contains the growth rate leading to the fre-
quency and quality factor of resonance. The finite element
method was applied to obtain approximation solutions with

amping coefficient �.

5 2 1.5

17.3±1.43 26.4±2.04 33.5±6.46

Fig. 6 Comparisons between the experiments and computational
results using the fitted fluid damping coefficient.
fluid d

.92
Apr–Jun 2009/Vol. 8�2�6
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r without the presence of the fluid damping terms sepa-
ately. The results obtained from the model were compared
o the experiments in which a clamped-clamped beam reso-
ates vibrated in air. It is shown that the predicted quality
actor using a thermoelastic damping model alone is much
igher than the test results, indicating that the fluid damp-
ng is the dominant damping source for the resonant system
f interest. Good correlations were achieved by the linear-
zation of the governing equations and by the introduction
f the fluid damping coefficient, whose value was inversely
etermined from the experiments. The methodology can be
xtended to other situations in which the beam has a differ-
nt size scale or a different geometric shape, or in a situa-
ion where the thermoelastic damping is equally important
which is likely to occur when the beam size approaches to
anoscale�. Future numerical and experimental work may
nclude the incorporation of the lateral traction induced by
he in-plane vibration of the resonator, which is believed to
ave a much lower energy dissipation rate than the out-of-
lane motion.
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