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Abstract
The effective elastic modulus and conductivity of a two-phase material system are investigated
computationally using a Monte Carlo scheme. The models contain circular, spherical or
ellipsoidal inclusions that are either uniformly or randomly embedded in the matrix material.
The computed results are compared with the applicable effective medium theories. It is found
that the random distribution, geometric permeability and particle aspect ratio have
non-negligible effects on the effective material properties. For spherical inclusions, the
effective medium approximations agree well with the simulation results in general, but the
analytical predictions on void or non-spherical inclusions are much less reliable. It is found
that the results for overlapping and non-overlapping inclusions do not differ very much at the
same volume fraction. The effect of particle morphology is also investigated by modelling
prolate and oblate ellipsoidal inclusions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Over the last few decades there has been a recurrent interest
in predicting the effective material properties of advanced
heterogeneous composites [1, 2]. The main interest has been
focused on the maximum achievable elastic modulus and
conductivity, using either analytical or numerical approaches
[3, 4]. A number of mechanical, physical and mathematical
principles were employed to derive approximate solutions
for estimating the effective properties of multiphase material
systems.

Prediction of the percolation threshold is usually a first
step. For example, Yi and Sastry [5] derived analytic
approximations for percolation points in two-dimensional (2D)
and three-dimensional (3D) ellipsoids based on the series
expansion method. Yi [6] also studied the void percolation
problem of a medium containing overlapping ellipsoids. These
results are useful in predicting the minimum amount of material
needed to achieve conduction or mechanical strength. In
addition to the predictions of the percolation threshold, the
elastic modulus and conductivity of fibrous networks [7, 8]
or particulate systems [9] were also studied computationally.

However, these works were based on the single-phase system in
which the fibres or particles are the only material phase. More
realistic composite systems consist of at least two phases: the
matrix materials, which are used for structural integrity, and
fillers, which are used for improving mechanical, thermal or
electrical performance. In modelling a multiphase material
system, the physical connections between different material
phases must be taken into careful consideration.

It is well known that the effective medium theories (EMTs)
can be used to estimate the effective properties of multiphase
materials for a wide range of volume fractions [1, 10].
Examples of these theories include the linear rules of mixing
[11], the Maxwell approximation [12], the self-consistent
approximation [13] and the differential effective medium
theory [14]. For example, Mondescu and Muthukumar [15]
derived closed form solutions for randomly disturbed particles
at low volume fraction based on the EMTs.

However, there is always an uncertainty associated with
the numerical accuracy of EMTs [16]. Therefore, in addition
to analytical approaches, computational methods have been
widely used to investigate the problem, and perhaps the most
widespread method is the derived finite element analysis
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using digital images for composite materials [3, 17]. This
method requires a particular error analysis in deriving the
results. An application of this method was explored by
Roberts and Garboczi who studied linear elastic properties of
random porous composites with various microstructures [18].
However, reduction in local maximum errors, particularly
at material boundaries, is not guaranteed. In an alternative
approach there is no need to take x-ray of composite materials
to obtain digitalized images for finite element analysis. This
approach is based on various state-of-the-art software packages
to analyse the morphology and properties of composite
structures. For example, Cai applied this concept to compute
the thermal conductivity of PTEE composite [19].

Dealing with the finite element modelling of a multiphase
material system is by no means an easy task, since the inclusion
materials are interconnected with the matrix. The persistent
obstacles to mesh automation of complex structures are well
known and no individual commercial code is capable of
handling the problem of interest. In this work, we employ a
new, direct simulation method that does not rely on digitization
of the material phase, thus allowing more accurate modelling
of the interconnected structures. The method is based on the
direct Delaunay tessellation scheme, i.e. a general triangulation
method from scattered points. Several commercial codes
worked jointly in the model development: Matlab® [20],
Comsol Multiphysics® [21] and Abaqus® [22], as well
as a standalone code written in C programming language
for particle dispersion. The analytical approximations have
also been obtained from the EMTs, for both validation and
comparison purposes.

For realistic multiphase composites, the interfacial effect
could play an important role. For example, Torquato
and Rintoul [23] developed rigorous bounds on effective
conductivity for the interfacial surface effect between spherical
inclusions and matrix, and this work was later extended
for other problems as well [24, 25]. In addition, the
mechanical contact problems were investigated in the context
of random media recently [26]. This work, however, is
focused on the morphological effects on the properties,
and the interfacial effects have therefore been ignored for
computational efficiency. The methodology itself, however,
can in principle be applied to a more general situation
incorporating interfacial effects as well.

2. Methods

2.1. Effective medium approximations

Equations (1)–(3) define the Maxwell approximation scheme
for the effective elastic modulus and conductivity of
d-dimensional systems (d = 2 for 2D systems and d = 3
for 3D systems) containing spherical inclusions. For circular
void inclusions, equation (4) was used to obtain the analytical
solutions, and the matrix in this case was assumed to be
incompressible where K2/K1 = ∞, and the circular voids
are cavities where K2 = G2 = 0. Here K represents the bulk
modulus, which is defined by K = E/[3(1 − 2ν)], and G is
the shear modulus, which is defined by G = E/[2(1 + ν)].

In the above definitions, E is the elastic modulus and ν is
Poisson’s ratio. The subscripts ‘1’ and ‘2’ correspond to the
matrix phase and the inclusion phase, respectively.

Ge − G1

Ge + H1
= φ2

[
G2 − G1

G2 + H1

]
, (1)

Hi ≡ Gi [dKi/2 + (d + 1) (d − 2) Gi/d]

Ki + 2Gi

, i = 1, 2, (2)

σe − σ1

σe + (d − 1)σ1
= φ2

[
σe − σ1

σ2 + (d − 1)σ1

]
, (3)

Ge

G1
= d(1 − φ2)

d − 2φ2
, K2 = G2 = 0,

K1

G1
= ∞. (4)

In these equations, φ2 is the volume fraction of the inclusions
(the volume fraction of the matrix, φ1, is thus equal to 1−φ2);
G1, G2 and Ge are the shear modulus of the matrix, the
shear modulus of the inclusions and the overall effective shear
modulus, respectively; σ1, σ2 and σe are the conductivity of
the matrix, the conductivity of the inclusions and the overall
effective conductivity, respectively.

The explicit formulae of the self-consistent (SC)
approximation are shown in equations (5)–(9). Equation (10)
is the form of the SC approximation for void inclusions, and
the matrix is again assumed to be incompressible here.

M∑
j=1

φ2
Gj − Ge

Gj + He
= 0, (5)

He ≡ Ge [dKe/2 + (d + 1)(d − 1)Ge/d]

Ke + 2Ge
, (6)

M∑
j=1

φ2
σj − σe

σj + (d − 1)σe
= 0, (7)

σe = α +
√

α2 + 4(d − 1)σ1σ2

2(d − 1)
, (8)

α = σ1(dφ1 − 1) + σ2(dφ2 − 1), (9)

Ge

G1
= d [(d − 1) − (d + 1)φ2]

d(d − 1) − 2φ2
. (10)

In these equations, M represents the number of different types
of inclusions.

Finally, the differential effective medium (DEM)
approximation is an indirect approximation approach. The
implicit formulae for this approach are shown in equations
(11) and (12) as follows:

(1 − φ2)
dGe

dφ2
= [

Gj + He
] G2 − Ge

G2 + He
, (11)

(
σ2 − σe

σ2 − σ1

) (
σ1

σe

)1/d

= 1 − φ2. (12)
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(a)

(b)

Figure 1. Finite element model of a unit square plate containing
(a) uniformly distributed circular voids with 19.6% void volume
fraction and (b) randomly distributed circular voids with 38.5% void
volume fraction.

2.2. Two-dimensional computational models

In the 2D simulations, Matlab® and Comsol® were directly
used to create finite element models in a rectangular simulation
domain of unit size required for the subsequent mechanical
analysis. In particular, a dynamic collision algorithm was
applied to randomly deploy non-overlapping voids or fillers.
The finite element mesh was then generated by using the built-
in functions in Comsol® and the analyses were performed via
a user friendly interface of the software.

Three different scenarios were studied as follows.
Case (1)—arrays of circular voids were uniformly distributed
in the domain with the same spacing in both x- and
y-directions. The voids had the same size with a fixed
radius of 0.05. Optimized mesh quality was achieved for
the finite element analysis and figure 1(a) shows an example
of such a model. The number of triangular elements in

the model was 6800 elements. Case (2)—the circular voids
were randomly dispersed in the domain. ‘Random’ here is
referred to as a Poisson process following a uniform probability
density. Figure 1(b) shows an example of randomly distributed
circular voids with 7447 elements. Case (3)—the circular
voids in case (2) were replaced by disc-shaped circular fillers,
and therefore two dissimilar materials were involved in this
scenario.

The mechanical boundary was constrained by applying a
prescribed displacement of 0.01 along the y-direction, and an
isotropic linear elastic analysis was performed to determine
the reaction forces. The effective elastic modulus of the
system was estimated by taking the ratio of the resulting stress
to the preset strain. According to the scaling theories, the
result computed in this way is a function of the simulation
domain. However, when the ratio of the domain size to the
diameter of inclusions is sufficiently large, the result will
approach the asymptotic limit. Several physical assumptions
and mathematical simplifications were made: (1) for circular
fillers, the two phases had the same Poisson’s ratio (0.3) to
minimize the total number of variables in the model; (2) the
interfaces between dissimilar materials were bonded by either
adhesives or special chemical or thermal treatment, therefore
no contact surfaces were modelled; (3) the simulation results
were normalized against the properties of the matrix, and hence
the modulus or conductivity is dimensionless.

2.3. Three-dimensional computational models

In the 3D simulations, a different scheme was implemented
to automate the modelling process, due to the difficulties
in a direct simulation using the existing commercial codes.
It involved a three-step procedure: first, a similar collision
algorithm was employed to generate overlapping or non-
overlapping inclusions. Second, the obtained geometric data
were used to generate a finite element mesh by a standard
Delaunay tessellation scheme. In the last step, the output data
of the code bundle was written into a script file readable by
ABAQUS® for the subsequent finite element analysis.

Three different models were investigated: (1) overlapping
spherical inclusions, (2) non-overlapping spherical inclusions
and (3) non-overlapping ellipsoidal inclusions. Since the
problem involving void inclusions were already studied in the
2D cases, here our attention was focused on the continuum
problems and the inclusions in all three models were assumed
to be fillers.

In the first model, all the spheres were identical and
had a radius of 0.1 (the simulation domain remains as a unit
cell). These spheres were deployed randomly in the matrix
following an algorithm similar to the one used in the 2D
models. The tetrahedron finite element mesh was generated
via a 3D Delaunay tessellation scheme in Matlab®. The
volume fraction of spheres was obtained by summing the
volume of each individual element that was located in the
interior of at least one sphere. Figures 2(a) and (b) show
the pictures of the mid-plane cross sections of overlapping
spheres. In the final step, the mesh data were exported to
an ABAQUS® input file. In addition to mechanical analysis,
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(a)

(b)

Figure 2. 3D finite element model in a unit cubical domain for (a)
overlapping spherical particles and (b) cross section along the
mid-plane of the matrix with spheres removed.

the effective conductivity of the material system was also
evaluated by a steady state heat transfer analysis. More
specifically, unit temperature difference was applied on two
opposite sides of the unit cell and the reactive heat flux
was computed. The total heat transfer rate by summing the
nodal heat flux is equivalent to the effective conductivity of
the system. Regardless of the physical distinction between
thermal and electrical conductions, the normalized result can
be interpreted as either the thermal conductivity or electrical
conductivity because of the mathematical analogy between the
two phenomena.

Non-overlapping spheres were modelled in a strategy
similar to that for circular discs, except that the process
was more computationally intensive. Figure 3(a) shows
a computer-generated system of non-overlapping random
spheres.

In addition to spherical inclusions, we developed a model
for simulating ellipsoidal inclusions. Two types of ellipsoidal
particles, oblate (disc-shaped) and prolate (cigar-shaped) were

(a)

(b)

Figure 3. Computer-generated models of (a) non-overlapping
spheres, and (b) non-overlapping ellipsoids.

modelled and investigated. Figure 3(b) shows a computer-
generated random system of oblate ellipsoidal particles. All
the ellipsoids were assumed impermeable. The locations and
geometric data of ellipsoidal particles were generated in the
same way as that used for spherical particles. Although a
generalized ellipsoid would be a tri-axial particle, here we
focused on ellipsoids of revolution only. Therefore only two
parameters were sufficient to determine the geometric shape
of each particle: namely, minor axis length and major axis
length. To generate random ellipsoidal particles, not only
are the centrepoint locations distributed randomly but also the
Euler angles of the axes must follow the appropriate density
functions of probability.
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Figure 4. Comparison of normalized elastic modulus between
simulations and effective medium approximations for both uniform
and random circular void models.

3. Results

3.1. Circular inclusions

We first investigated the effect of circular voids on the elastic
modulus. Figure 4 shows a plot of the simulated elastic
modulus obtained from the finite element analysis in the
following two cases: (1) uniformly distributed circular voids
and (2) randomly distributed circular voids. It can be seen
that the effective elastic modulus decreases with the void
volume fraction in both cases. In addition, the modulus of
the material containing uniformly distributed circular voids is
higher than that of the material containing randomly distributed
voids. The reason could be the effect of the higher stress
concentration in the regions where the voids are located very
close to each other in the second case. In the same figure, the
simulation result is also compared with the EMTs including
the Maxwell approximation and the SC approximation. Even
though the assumption here is that the matrix is assumed to be
incompressible, the Maxwell approximation shows a similar
pattern compared with uniformly distributed voids. The SC
approximation also shows agreement with the simulations
for both uniform and random distributions at lower volume
fractions. However, there is a significant discrepancy at
higher volume fractions. Overall, the simulation results
roughly fall between the Maxwell approximation and the SC
approximation results.

To investigate the effect of a two-phase material system,
the void spaces in the previous model were replaced by elastic
circular discs in figure 5(a), where the results are shown for
the effective elastic modulus of a plate containing randomly
distributed discs. A comparison has been made between the
simulations and those predicted by the linear rules of mixing.
In parts (a), (b) and (c) of figure 5, the normalized modulus
of the inclusions varies from 2, 5 to 7, respectively, whereas
a unit elastic modulus has been maintained for the matrix
material. It can be seen that the simulation results fall between
the upper and lower limits of the linear rules of mixing [11].

(a)

(b)

(c)

Figure 5. Comparison of normalized elastic modulus between
simulations and linear rules of mixing for models containing
non-overlapping random circular inclusions, with (a) E2 = 2,
(b) E2 = 5 and (c) E2 = 7.

In addition, the difference between the upper and lower limits
increases with the modulus of the discs. Apparently, the
effective modulus of the composite material increases with
both the volume fraction and the modulus of the embedded
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particles. For example, the effective moduli (Eeff) increase by
40% at 50% volume fraction of discs with E2/E1 = 2. At the
same volume fraction, Eeff increases by 100% and 130% for
E2/E1 = 5 and 7, respectively. Similar results have also been
obtained for uniformly distributed disc-like inclusions.

Figure 6(a) shows the comparison between the finite
element simulation and the EMTs. The simulation models
along with all the assumptions remain the same as those used
in figure 5. It is seen that the effective modulus of the system
falls between the Maxwell and the SC approximations. In
figure 6(a) where E2/E1 = 2, an excellent agreement is
achieved for the entire range of volume fraction. Using either
of the approximation theories would yield an error less than
2% in the predicted elastic modulus. In figures 6(b) and (c)
where E2/E1 = 5 and 7, respectively, the simulation result
shows good agreement with the approximation theories at a
volume fraction below 40%. At a volume fraction above 40%,
the results deviate slightly from the approximation theories.
Nevertheless, the Maxwell theory and the SC approximation
consistently provide a lower and an upper bound for the
simulation results, respectively.

3.2. Spherical inclusions

The above work was extended to the 3D case in which
the matrix contains randomly distributed spherical particles
instead of circular discs. Figure 7 shows a comparison of the
elastic modulus between the simulation and the approximation
theories. The spheres are allowed to overlap in this case
and E2/E1 = 4 is assumed. Poisson’s ratio is fixed to
0.23 in both phases. It can be seen that the simulation
results fall between the Maxwell and the SC approximation
theories. Apparently, the effective modulus increases with the
sphere volume fraction. Also, it has been noticed that the SC
approximation generally yields much better results than the
Maxwell approximation.

In addition to the mechanical analysis, we also performed
the conductivity analysis for overlapping spheres as shown
in figure 8. The dimensionless conductivities of the matrix
material and the spherical inclusions are assumed to be 1 and
4, respectively. The simulation results are compared with the
three different effective medium solutions: Maxwell, SC and
DEM. It is seen that the effective conductivity increases with
the sphere volume fraction according to a power-law form
similar to the elastic modulus. All the three approximations
agree very well at lower volume fractions, especially below
20%. However, differences among FEM, DEM and Maxwell
can clearly be seen at higher volume fractions. In comparison
with the simulation results, the SC solution once again presents
the best solution among the three approximation methods.

The above work was further extended to non-overlapping
spherical inclusions, which are believed to represent more
realistic material systems. The predicted effective elasticity
modulus and conductivity are shown in figures 9, 10 and
11. For mechanical analysis, figures 9(a), (b) and (c)
show the effective elastic modulus for three cases where
E2/E1 = 2, 4 and 0.25, respectively. In figure 9(a),
it can be seen that the simulation results are in excellent

(a)

(b)

(c)

Figure 6. Comparison of normalized elastic modulus between
simulations and effective medium solutions for models containing
non-overlapping random circular inclusions, with (a) E2 = 2,
(b) E2 = 5 and (c) E2 = 7.

agreement with the approximation solutions. In figure 9(b),
the difference is discernable, but not quite significant. At
lower volume fractions, the SC solution is closer to the
simulation results whereas at higher volume fractions the
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Figure 7. Comparison of normalized elastic modulus between
simulations and effective medium solutions for models containing
overlapping random spheres, with E2 = 4.

Figure 8. Comparison of normalized conductivity between
simulations and effective medium solutions for models containing
overlapping random spheres, with σ2 = 4.

Maxwell approximation tends to be closer. This is somewhat
different from the results of overlapping particles. Comparing
figures 7 and 9(b), we found that the effective modulus does not
differ very much between the overlapping and non-overlapping
inclusions. In figure 9(c), Eeff decreases with the sphere
volume fraction since the spheres are ‘softer’ than the matrix
in this case. The comparisons between the EMTs and the
simulations generally do not show satisfactory agreements
here, especially at higher volume fractions. For example,
when the sphere volume fraction is 50%, the finite element
simulation, the Maxwell solution and the SC solution predict
results of 2.3, 2.0 and 2.1, respectively. This discrepancy could
be related to the limitation of the approximation theories for
predicting the effective moduli of composite materials.

The corresponding conductivity analysis was also
performed on non-overlapping spheres as shown in figures 10

(a)

(b)

(c)

Figure 9. Comparison of normalized elastic modulus between
simulations and effective medium solutions for models containing
non-overlapping random spheres, with E2 = 4.

and 11. Again, we chose the ratio of the conductivities of
the matrix and the spheres to be 1 : 4 for consistency. Clearly,
the simulation results fall between the SC solution and the
DEM solution while the Maxwell solution underestimates the
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Figure 10. Finite element analysis on the conduction of
non-overlapping random spheres.

Figure 11. Comparison of normalized conductivity between
simulations and effective medium solutions for models containing
non-overlapping random spheres, with σ2 = 4.

conductivity. The effective conductivity increases non-linearly
as the sphere volume fraction increases. For example, at
60% volume fraction, the effective conductivity increases by
approximately 150%. In addition, by comparing figures 8 and
11, we find that the conductivity does not differ very much
between the overlapping and non-overlapping conditions,
either.

3.3. Ellipsoidal inclusions

As mentioned previously in section 2, two types of ellipsoidal
particles, namely oblate and prolate, were investigated in
this work, and the outcomes of these simulations were
compared with the EMTs. Figure 12 shows the mechanical
analysis of a two-phase composite containing non-overlapping
ellipsoidal inclusions that are either oblate or prolate. The
aspect ratio for both types of ellipsoids is 1.4. Again,
the correlation is excellent between the simulations and the
analytical predictions. The Maxwell approximation exhibits
close correlations with both types of ellipsoidal particles at

Figure 12. Comparison of normalized elastic modulus between
simulations and effective medium solutions for models containing
non-overlapping random ellipsoids, with E2 = 4 and ε = 1.4.

Figure 13. Comparison of normalized conductivity between
simulations and effective medium solutions for models containing
non-overlapping random ellipsoids, with σ2 = 4 and ε = 1.4.

volume fractions below 20%. It has also been noticed that
the results of the prolate and oblate particles are nearly the
same at lower volume fractions, yet they start to deviate from
each other at a volume fraction above 40%. This deviation
increases with the volume fraction, and it is expected that at the
closed-packing limit, there should be an appreciable difference
between the two cases. In the conductivity analysis as shown
in figure 13, it is again seen that the SC approximation provides
a better prediction on the results compared with other theories.
In addition, the composite containing prolate particles has
a higher conductivity than that containing oblate particles,
although the difference is less than 5% at a volume fraction
below 60%.

The effect of aspect ratio on the effective elastic modulus
is presented in figures 14(a) and (b). The ‘aspect ratio’, ε,
is defined as the ratio of the major axis length to the minor
axis length. The geometry is assumed to be a prolate ellipsoid
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(a)

(b)

Figure 14. Effect of ellipsoid aspect ratio on effective elastic
modulus: (a) equivalent spherical radius= 0.1; (b) equivalent
spherical radius = 0.05.

of revolution, and hence the two minor axes have the same
length. The number of ellipsoids used in the simulation
varies from 170 to 1020 depending on the volume fraction of
particles. From the figure, it is seen that the effective modulus
of the composite is a function of the particle aspect ratio. In
figure 14(a), the mean radius of particles is 0.1 and it is seen
that the maximum modulus of ellipsoidal particle system is
5% higher than that of spheres at the same volume fraction. In
figure 14(b) where the mean radius of particles is 0.05 and at
the same volume fraction, the maximum value of the modulus
is approximately 10% higher than that of a spherical particle
system. Although none of the effective medium solutions
agrees with the simulations, the SC approximation yields a
closer result. More interestingly, evidence shows that the
relationship between the modulus and the aspect ratio is not
monotonic. Rather, the result oscillates when the aspect ratio
varies. More specifically, the effective modulus decreases in
the range ε = 1–2, then increases for ε = 2–4. The maximum
value occurs at ε = 4 and then it decreases again. Further
increase in the aspect ratio leads to only a mild change in the
result: from figure 14, it can be seen that the moduli for ε = 4

and 10 are not far away from each other. It is conjectured
that the spatial distribution of the stress concentration zones
may play a role in this oscillatory result. But the exact reason
behind the phenomenon is not clear yet and requires further
investigation in future.

Finally, it should be pointed out that for a general
two-phase elastic material system involving four distinct
parameters (E1, ν1, E2, ν2), Dundurs [27] has proved that the
stress field can be written in terms of only two parameters.
Therefore, if Poisson’s ratios of dissimilar materials are of
interest, only one extra parameter needs to be included in the
mechanical analysis accordingly.

4. Conclusions

In this work, a finite element modelling approach was
successfully implemented to investigate the elastic modulus
and conductivity of heterogeneous composites containing
particulate inclusions. Both 2D and 3D models were
developed and the simulation results were compared with the
existing analytical approximation theories. Several important
conclusions can be drawn from this study:

(1) The randomness in the particle distribution has an impact
on the properties of a two-phase particulate material
system. For solid inclusions, the EMTs are capable
of predicting the material properties quite well, but the
predictions on void inclusions are much less reliable.

(2) Among the various approximation methods, the SC
solution yields much better results than the other methods
including the Maxwell solution, the DEM solution and the
rules of mixing. However, the SC approximation is less
accurate in the following two situations: (a) particulate
inclusions of large aspect ratios and (b) soft inclusion
materials (i.e. the modulus of the matrix is higher than
that of the inclusions).

(3) Both the effective elastic modulus and conductivity
show relatively weak dependence on the permeability of
the particulate inclusions—that is, at the same volume
fraction, the overlapping particles and non-overlapping
particles yield almost the same results.

(4) Investigation of the morphological shape of the inclusions
reveals that at higher volume fractions, the prolate
particles yield a higher elastic modulus and a higher
conductivity than the oblate particles. However their
differences are not significant.

(5) There does not exist a monotonic relationship between
the properties of material containing ellipsoidal inclusions
and the particle aspect ratio. The exact locations of the
maxima depend on the properties of both material phases.

It should be pointed out that the 3D models and methodologies
developed in this work may provide a convenient way to study
mechanical and transport properties of multiphase composites
for not only spherical and ellipsoidal inclusions but also short
fibres as well as filler contents of other shapes.
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