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Geometric percolation thresholds of interpenetrating plates in three-dimensional space
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The geometric percolation thresholds for circular, elliptical, square, and triangular plates in the three-
dimensional space are determined precisely by Monte Carlo simulations. These geometries represent oblate
particles in the limit of zero thickness. The normalized percolation points, which are estimated by extrapolating
the data to zero radius, are 7,=0.961 4 =0.000 5, 0.864 7 =0.000 6, and 0.729 5 = 0.000 6 for circles, squares,
and equilateral triangles, respectively. These results show that the noncircular shapes and corner angles in the
plate geometry tend to increase the interparticle connectivity and therefore reduce the percolation point. For
elliptical plates, the percolation threshold is found to decrease moderately, when the aspect ratio & is between
1 and 1.5, but decrease rapidly for e greater than 1.5. For the binary dispersion of circular plates with two
different radii, 7, is consistently larger than that of equisized plates, with the maximum value located at around

rl/r2=0.5.

DOI: 10.1103/PhysRevE.79.041134

I. INTRODUCTION

Percolation is referred to as a phenomenon where at least
one domain-spanning pathway exists in a physical system. It
is closely related to the transport and mechanical properties
of multiphase materials. Regardless of the interfacial contact
among different material phases, the measurement of the
geometric percolation threshold, i.e., the minimum amount
of materials required for percolation, is often one of the fun-
damental tasks in design and optimization of these materials
[1,2]. Mathematically, general percolation processes and
phenomena have been studied in the past decades, via the
development of exact or approximate solutions in a finite or
infinite field [3]. The fact that higher aspect ratio phases
percolate at lower volume or area fractions in both two-
dimensional (2D) and three-dimensional (3D) systems has
been well documented; but the quantitative determination of
the geometric effects on noncircular or nonspherical particles
were relatively recent, due to the intensive computation de-
manded in the work.

Among the two primary means of estimating percolation
points, namely, the analytical approximation [4,5] and the
Monte Carlo simulation [6,7], the latter has proved more
computationally effective, especially for 3D systems. Exten-
sive work on circular plates or spheres exists in the literature,
including the measurement of the percolation threshold for
fully penetrable plates of the same size using the frontier-
walk method [8] as well as the determination of the critical
threshold and exponents for equisized spheres [9,10]. Perco-
lation problems for disks or spheres of different radii were
investigated by a binary mixture of particles [11,12]. Tt was
found that the percolation threshold of such a system is typi-
cally very close to that of equisized particles. For example,
for a half-and-half mixture of smaller and larger particles, the
difference in the percolation threshold is lower than 1% for
both spheres and circular plates. Further, the research activi-
ties on the percolation of disks and spheres were not only
limited to solid material phases but also extended to void
phases, namely, “void percolation” [13]. More complex ge-
ometries involving additional parameters have also been
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studied, including solid or hollow fibers and tubes [14]. It
was reconfirmed that the percolation threshold is strongly
dependent on the particle aspect ratio, implying that much
less materials are needed for percolation of fibers or other
high aspect ratio particles, thus merit the use of material
inclusions of elongated shapes. For elliptical particles, simu-
lation results were obtained from circles to needles and an
interpolation formula was developed that was believed supe-
rior to all other effective-medium theories [15,16]. For ellip-
soids, interests were centered on ellipsoids of revolution in
which two parameters are needed to define the geometric
shape [17]. The extreme oblate limit of platelike particles to
the extreme prolate limit of needlelike particles was studied
extensively and their asymptotic solutions were derived from
curve fitting. The effect of dimensionality, i.e., the crossover
from 2D to 3D ellipsoidal systems, was also investigated
computationally [18]. Finally, the continuum percolation for
interpenetrating squares and cubes were also studied using
the Monte Carlo method, and the corresponding percolation
thresholds accurate to three decimal places were reported
[19].

Regardless of these important works in the area, results
are missing for a special category of the particulate geom-
etry, i.e., 2D plates oriented in the 3D space. It is of particu-
lar interest because circular plates are the limiting cases of
oblate ellipsoids of revolution when their thickness ap-
proaches zero. Compared to their ellipsoid counterparts,
plate-shaped particles can percolate at a much lower volume
fraction and therefore have potential applications in engi-
neering practice. In addition, elliptical plates in the 3D ori-
entation correspond to a limiting case where the generalized
triaxial ellipsoids have a degenerate axis. Discussions on the
percolation threshold of triaxial ellipsoids (as opposed to el-
lipsoids of revolution), particularly in their degenerate sce-
narios, have never been attempted in the literature. Further,
realistic material inclusions can rarely have perfect circular,
spherical, or ellipsoidal shapes. Instead they may possess
corner angles and facets. How these geometric factors alter
the percolation properties remains unknown. It is our inten-
tion in the present work to fill in this gap. We target the
geometric effects on the percolation thresholds of platelike
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FIG. 1. Four fundamental geometries of plates under
investigation.

particles by introducing four fundamental shapes: circles, el-
lipses, triangles, and squares (as shown in Fig. 1). We first
establish the intersection criteria for such geometries and
then apply the scaling theories and linear regressions to es-
timate the percolation thresholds. Comparisons will then be
made to infer the effects of geometry on the results.

II. METHODS
A. Percolation detection

A standard computational algorithm for percolation
checking has been implemented. In particular, random plate-
like particles were generated in a unit-cell domain (Fig. 2).
The interparticle connectivity as well as the particle-
boundary connectivity was checked using the appropriate
criteria. The system percolates if there is a connected cluster
across the entire domain. The process is intrinsically proba-
bilistic for a finite system and the probability of percolation
was determined as simply the ratio of the percolating to the
total number of simulations performed. The plate number
corresponding to a percolation probability of 50% was re-
corded as the percolation threshold. This was achieved by a
linear interpolation of the percolation probability against the
plate number. Results for each condition reported in the cur-
rent study were generated using at least five separate realiza-
tions. Since the probabilistic variation in the results depends

FIG. 2. (Color online) Computer realization of 100 random
plates of circular shape in 3D.
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on the plate size or the total plate number, an algorithm was
developed to make the process more efficient. In particular,
the number of realization was variable depending on the
plate size. For larger plates, this number was set to a few
hundred, whereas for smaller plates, it was set to between
five and ten. This treatment was able to greatly reduce the
variation in the results, thus increase the solution accuracy.
The percolation threshold can in principle be expressed in
terms of either area fraction for 2D particles or volume frac-
tion for 3D particles. In the current work, where plates are
oriented in 3D, because the statistical invariant must be a
cubic function of the characteristic length, the definition of
percolation threshold should be consistent with that of the
equivalent 3D systems instead of 2D systems. We define the
following variable to measure the percolation threshold:

4
n=nmr (1)

where r is the radius and rn is the total plate number. For
triangles and squares, r is the equivalent radius of the circu-
lar plate having the same area. When r approaches to zero, n
will become infinite for percolation, but the value of 7 will
approach an invariant 7., which is defined here as the “per-
colation threshold” of the system throughout the paper.

B. Intersection criteria
For circular plates, given two arbitrary plates with radii r;,
normal vectors n; and center locations (x;, y; z;) where i

=1,2. Define IE as the position vector from 1 to 2 and also
define the following variables:

cos =1y - N, (2)
E= R n,/sin a, (3)
ﬁc=ﬁ)1><f[2, (4)
R, s
X,= =+ - &, (5)
In,|
R,
Xp= |ﬁ|C—W§—§2, (6)
C

-y I
y= > JN - g(nl ' l’lz), (7)
|n1 X ne
—
x,=\ri =y, (®)

then in the following two cases, the two circular plates will
intersect:

2

Case 1iry—&>0, {+y*=r] or x3+y°=r},

)

Case 2:r§— §2 >0, |y| <ry, (10)
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{0y = x,)(x = x,) <0 or (x,+x,)(x,+x,) <0}

For elliptical plates, there is no closed-form criterion
available for checking geometric intersection. The computa-
tional strategy here is to take one plate (plate «) as a refer-
ence plate and choose the frame of reference such that the
major and minor axes of the plate are aligned with x and y
axes of the global coordinate system. The circumference of
the other plate (plate B) is then divided into a number of
small segments in search of the intersection point between
the boundary of plate 8 and the plane formed by plate «.

Case 1: assume there are no intersection points between
the line segments and plate «, then the two plates do not
intersect. Case 2: assume there are two points of intersection

(x4 v,) and (x;, y,) and
_ YaXp = YpXa

Yo= > (11)
Xp—Xq
k=yb_ya’ (12)
Xp—Xq
1 K 2yok y%
A—a2+;, 327, C:E—l, (13)
A =B%-4AC, (14)
_—B+V/Z _—B—\/K (15)
WETo0 0 Nt T

where a and b are the half lengths of the major and minor
axes of plate «, respectively. Then, in the following case, the
two plates intersect:

A>0, {(x,—x,)(x,—x,) <0 or (x,-x,)(x,—x,) <0}

(16)

In all other situations, the plates do not intersect.

The same strategy is applicable to square and triangular
plates—that is, we choose one plate as the reference plate
and discretize its boundary into line segments to find the
points of intersection between these segments and the plane
formed by the other plate. It is then followed by examining
the relative positions of these intersection points with respect
to the square or triangular surface. However, the total num-
ber of the required line segments is greatly reduced here.
Only four line segments are needed for a square and three
segments for a triangle, as opposed to a least 20 or 30 such
segments needed for an ellipse. Hence, the computational
efforts can be greatly reduced for squares and triangles com-
pared to elliptical plates.

The above intersection criteria have been validated by
graphically realizing the particles in the 3D space followed
by an inspection of their physical connectivity. A minimum
of 100 random realizations have been examined before they
are actually implemented for percolation checking.

For the binary dispersion of disks of different radii, we
focus our interest in disks of two different radii »; and r,
where r; <r,. Assume the two types of disks have the same
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number and therefore f=0.5 where f represents the fraction
of smaller disks. Define r as the mean radius, i.e., r
=(r;+ry)/2, and A=r|/ry, 0=N=1, then

AN 2r

i 17
T+n 2T 14 (17)

ry=

Further, we fix the total disk number in this binary system
while we chose the value of r such that the corresponding 7
defined in Eq. (1) is maintained the same as that of the eq-
uisized disk system. If the equisized disks have radius r then
the relationship between r and r is

(1 +)\)r0

r=sy

[

SOl 1y

Based on these assumptions, simulations can be performed in
a procedure similar to equisized disk systems and the result-
ing percolation thresholds 7. can be evaluated.

C. Error analysis

The numerical error associated with the extrapolated criti-
cal percolation point 7. can be estimated in the following
method. Assume there is a data array containing n pairs of r
and 7 (r;, 7,), according to the linear regression theory, we
have

n=ay+ar, (19)
where
n n n
”E (rimy) - E ”iZ 7
i=1 i=1 =1
a,= n n 2 (20)
N
i=1 i=1
and
2 71,-2 ",-2—2 ”iE rin;
=1 =l =1 =1
ag= (21)

n n 2
nE 71‘2 - <2 ”i)
i=1 i=1

The corresponding confidence intervals for o,y and o,; are

(22)

040= 09

and

(23)

Ta1 =00 n n 2
nZ ",2— (E ”i)
i=1 i=1

where we assume that all the data points have the same con-
fidence interval, oy and
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FIG. 3. Determination of percolation threshold for spheres.

1 n
0p= ;2 [y; = (ag+ aix) . (24)
i=1

Clearly, the critical percolation point 7, at r=0 is equal to a
and the associated standard deviation is equivalent to o .

III. RESULTS

The percolation algorithm was first validated against the
equisized spheres system whose solution is well known. The
simulation results are presented in Fig. 3. The percolation
threshold was computed from nine different radii ranging
from 0.007 to 0.04. The total number of particles was from
approximately 240 000 to 1300 accordingly. To minimize the
numerical error, the simulations were repeated 50 to 1000
times for each particle radius and the computational time was
approximately 70~ 150 Pentium (D) CPU h for each radius.
A linear regression was performed to estimate the percola-
tion threshold corresponding to spheres of zero radius. The
extrapolated solution 7,.=0.341 2 *0.000 3. This result cor-
responds to a volume fraction of 28.91%, which is fairly
close to the currently most accurate solution 28.9573% ob-
tained by Lorenz and Ziff [10]. This preliminary work can
therefore be considered as a validation process for the per-
colation algorithm developed in the present study.

The same algorithm was subsequently applied to perme-
able circular plates in the 3D space and the results are shown
in Fig. 4. These results were computed from eight different
radii ranging from 0.01 to 0.04, with the total number of
particles ranging between 230 000 and 3800 accordingly.
The extrapolated solution is 7,=0.961 4 +0.000 5. It should
be pointed out that this result is noticeably lower than that
reported by Garboczi et al. [17]. They studied the oblate and
prolate ellipsoids and provided an asymptotic solution for
oblate particles of zero aspect ratio (that is, zero dimension
through the thickness), which should be identical to the so-
Iution for circular plates. However, their prediction was
1.27a/b in terms of the volume fraction of particles where b
is the radius of revolution and a is the semiaxis length. Ap-

plying
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FIG. 4. Determination of percolation threshold for circular
plates in 3D.

4
f=1—e‘”VznV=§n7mb2, when a—0, (25)

where f represents the volume fraction, V is the volume of
each individual particle, and n is the particle number, we
have immediately

4
.= gnWbS —1.27, (26)

which is apparently much higher than the result predicted in
the current study (0.9614). The reason behind this discrep-
ancy is yet unknown. It was noticed in the past that Garboc-
zi’s solutions for the percolation thresholds of overlapping
ellipsoids were consistently higher than those predicted by
other methods [20], and therefore it is not surprising to see
the discrepancy in the comparison here.

For square-shaped plates in the 3D space, the results are
shown in Fig. 5. The maximum number of plates involved is

0.93 : : : y
0.92} -
0.91} e

0.9r -
o o
= o

0.89f >
0.88f .

0.87f .

O'860 0.01 0.02 0.03 0.04

radius, r

FIG. 5. Determination of percolation threshold for square plates
in 3D (r is the equivalent radius of squares).
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FIG. 6. Determination of percolation threshold for triangular
plates in 3D (r is the equivalent radius of triangles).

150 000. The extrapolated percolation threshold at zero size
of squares is 7.=0.864 7=0.000 6. Clearly, this value is
lower than that for circular plates, indicating that fewer par-
ticles are needed for percolation. This is because the corner
angles of squares make it easier for the plates to touch each
other, therefore reduce the percolation point. This is consis-
tent with the corner effects elucidated in Baker er al.’s [19]
work regarding the continuum percolation of 2D squares and
3D cubes.

The results for quadrilateral triangles are shown in Fig. 6.
The maximum number of plates is around 430 000, and the
predicted percolation threshold is 7.=0.729 5=0.000 6.
Compared to the square-shaped plates, the triangles have
slightly more elongated shape at the corners (60° angles in
triangles as opposed to 90° angles in squares) therefore fa-
cilitate the interparticle connectivity. As a result, the perco-
lation threshold is further reduced. The above results includ-
ing the mean values and standard deviations for various
geometries are tabulated in Table I.

0.7}

0.6

- - ]
1 5

2 3 4
aspect ratio, ¢

FIG. 7. Percolation threshold as a function of the aspect ratio of
elliptical plates in 3D.
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TABLE I. Estimates of the percolation thresholds for different
geometries in 3D.

Spheres  Circular plates Square plates Triangular plates
e 0.3412 0.9614 0.8647 0.7295
Error *0.0003 +0.0005 +0.0006 +0.0006

The investigation on elliptical plates revealed that the per-
colation threshold monotonically decreases with the plate as-
pect ratio (Fig. 7). At e=5, 7, is only half the value at ¢
=1, meaning that much fewer particles are needed to reach
percolation at higher aspect ratios. This is consistent with
both the analytical and computational results reported in the
literature. In addition, the results show that the reduction in
the percolation threshold is not significant when the aspect
ratio is below 1.5 but experiences relatively sharp decrease
beyond that point. This agrees with the predicted trends from
other elongated particles such as ellipsoids reported in the
literature [17]. A maximum of 30 000 particles were realized
in the simulations. Each aspect ratio was run for three differ-
ent radii 0.02, 0.03, and 0.04 for linear extrapolation. Par-
ticles with aspect ratio greater than 5 were not studied due to
the extremely intensive computation. However, it is expected
that the percolation threshold will follow the same mono-
tonic relationship with the aspect ratio beyond that point.

For the binary dispersion of circular plates, f was main-
tained to be 0.5 and N\ was varied from 0.1 to 0.9 with an
increment of 0.1 in the simulations. Notice that both A=0
and A=1 correspond to disks of the same size. Four different
mean radii were examined to extrapolate the percolation
threshold for each value of A. The estimated percolation
thresholds along with errors are listed in Table II. Clearly, 7,
increases at the beginning, reaches a peak value 7,
~().981 5 around A=0.5, and then decreases. At the two ends
where \ is close to 0 or 1, 7. is approaching 0.9616. It is
seen that for the entire range of N, the deviation of 7, from
the equisized disk solution is noticeably small not more than
2%. A close inspection also shows the existence of the asym-
metry in the result with respect to the midpoint A=0.5. These
results are consistent with Quintanilla and Ziff’s [21] work
on the binary dispersion of disks on a 2D plane, although a
different peak value location (A=0.4 when f=0.5) was re-
ported for 2D disks.

IV. CONCLUSIONS

The geometric percolation involving plates in the 3D
space has been studied using a Monte Carlo simulation
method. Four different geometries are studied: circles, el-
lipses, squares, and triangles, which represent the geometric
limits of oblate particles when one of the axes degenerates to
zero. The plate-plate intersection criteria for the four geom-
etries are established analytically. The percolation probabil-
ity at various equivalent radii is computed and the percola-
tion threshold is estimated at the limit of zero radius by
linear extrapolation. An error analysis is successfully applied
to estimate the solution tolerance. Comparisons among dif-
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TABLE II. Estimates of the percolation thresholds for binary dispersion of circular plates in 3D.

A 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
e 0.9612 0.9688 0.9734 0.9756 0.9815 0.9788 0.9703 0.9640 0.9616
Error +0.0007 *0.0005 +0.0007 *0.0006 +0.0005 +0.0007 +0.0004 +0.0006 *0.0006

ferent geometries show that the global or local curvatures
tend to increase the interparticle connectivity and thus reduce
the percolation point. For elliptical plates, the percolation
threshold has been found as a monotonic function of the
particle aspect ratio, which is consistent with the results for
ellipsoids or planar ellipses. When disks of two different ra-
dii are mixed together, the percolation threshold does not

change much, with a peak value located where the ratio of
the two radii is approximately 0.5. Some results have also
been compared to the data reported in the literature. The
results and methods used in the current study are useful in
predicting conduction and percolation characteristics of mul-
tiphase material systems containing oblate particles of thin
thickness.
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