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The void percolation thresholds of random oblate particles and thin plate composites are measured

computationally using the lattice mapping technique and the Monte Carlo simulation scheme. Two

types of spatially uncorrelated inclusions have been investigated: oblate ellipsoids and elliptical thin

plates, with which the site and bond percolation systems are developed separately. The results are

obtained from the finite-size lattices followed by a mathematical extrapolation to the infinite domains.

The computational results are validated by a comparison with the numerical solutions of the limiting

cases found in the literature. It is concluded that the void percolation thresholds of oblate inclusions

have a much stronger dependence on the geometric aspect ratio of the inclusions compared to those of

the prolate counterparts. In the limit, the percolation threshold g is measured to be 22.86 for circular

thin disks. Approximate solutions are presented in the form of polynomial functions and Pade

approximants. The results have potential applications in composite material designs and molecular

diffusion problems. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730333]

I. INTRODUCTION

Percolation is a phenomenon where one or more

domain-spanning pathways exist in a physical system.1 Mea-

surement of the geometric percolation threshold, i.e., the

minimum amount of the material phase required for percola-

tion, is typically one of the fundamental tasks in design and

optimization of advanced heterogeneous materials for better

performances.2,3 Over the past decades, the percolation phe-

nomena have been studied via the developments of a variety

of analytical and computational schemes.4 The measure-

ments of percolation thresholds in both two-dimensional5,6

and three-dimensional systems7 have been well documented,

but the quantitative determinations of the morphological

effects on noncircular or nonspherical particles were not

attempted until very recent,8,9 partly due to the intensive

computation involved in both analytical and numerical

approaches.

It is well known that percolation can occur in either the

material phase or the void space in a composite material sys-

tem. In the latter case, the percolation is called a void perco-
lation or Swiss-cheese percolation,10 namely, in a cheese-

like continuum where particles are cut away, the percolation

through the cheese itself is considered. One of the earliest

applications of void percolation is in fluid mechanics when

fluids flow through porous structures. Recently, molecular or

atomistic diffusion in heterogeneous structures, such as gas

diffusion in battery electrolytes11 and intracellular ion trans-

port in cytoplasm,12 aroused new interest in void percolation

problems. This is because the diffusion processes in these

materials often occur at small scales and have irregular path-

ways formed by the void space in the material microstruc-

tures. However, it is not clear at present how to effectively

model the dynamic motions of molecules through a confined

pathway. There exist several distinct tools for simulating dif-

fusion processes, including continuum diffusion, molecular

dynamics,13 and random walk simulations.14 However, it is

unknown how the existence of the voids may affect the mo-

lecular motions and thus the equivalent coefficient of diffu-

sion. To answer this question, it is essential to understand

how the structural morphology alters the local and global

probabilities of void percolation.

Despite the complexity in the mathematical treatment

and the considerable amount of computational effort

involved in void percolation studies, there was significant

progress in this area. For example, it has been known that

the void percolation for monodisperse systems can be simpli-

fied by mapping the system to a bond network associated

with the Voronoi tessellation of the sphere centers.15

Recently, some efficient techniques were also developed by

implementing the scaling theories16 and growth algorithms17

to obtain very precise results for void percolation thresholds

of monodisperse sphere systems.

Realistic particulate materials, however, do not possess

idealized spherical or circular shapes. It is interesting to know

whether the aspect ratio of the particulate inclusions has any

significant effect on the void percolation threshold. Recently,

it was confirmed that there are no universalities for void per-

colation threshold of ellipsoidal particles and that void perco-

lation associated with inclusions of large aspect ratio should

be treated differently from that of spheres.18 However, this

work was based on the prolate geometries, while the particles

in many applications involve oblate geometries. For example,

macromolecular diffusion in cells can be modeled by consid-

ering the available space in cytoskeletal networks and internal

membranes in cells.19 This was achieved by approximating in-

tracellular structures as mixtures of random overlapping

obstacles of various prolate or oblate shapes. In particular, the

cytoskeletal filaments were modeled as long thin cylinders
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whereas endoplasmic reticulum structures were represented

by thin disks.20 The shapes of the intracellular environment

have been shown to bring about a four-to-fivefold reduction in

diffusive transport, compared to diffusion in cytosol free of in-

tracellular structures.

Since the ionic diffusion problems are closely related to

void percolation, it is interesting to know whether the same

conclusions drawn from the past research can apply to oblate

systems as well. In particular, one may ask: does the void

percolation threshold of an oblate system have the same as-

pect ratio dependence as a prolate system?

Modeling void percolation of ellipsoids is more compu-

tationally intensive due to the increased degrees of freedom

in each particle. Although the Voronoi tessellation equiva-

lence does not apply to ellipsoidal particles, by mapping the

void continuum system into its lattice equivalent, it is possi-

ble to employ the Monte Carlo schemes to measure the per-

colation properties. This in fact was already accomplished in

the author’s prior research on prolate ellipsoidal systems18

and is equally applicable to oblate systems as well. In addi-

tion, when one of the axes of an oblate ellipsoid approaches

zero, the geometry will degenerate to an elliptical plate. By

refining the equivalent lattice system with a sufficiently large

number of sites or bonds, the asymptotic solutions can be

obtained from mathematical extrapolations.

II. METHODS

A. Lattice mapping technique

A lattice mapping technique was employed to formu-

late the void percolation system of interest. It was followed

by an efficient computational algorithm for finding the exis-

tence of any percolation path. More specifically, a three-

dimensional unit cell was divided into p� p� p points,

where p represents the number of points on each side. These

points are denoted as sites and the connections between two

neighboring sites are denoted as bonds. Oblate ellipsoids or

elliptical plates were then generated randomly inside the

cell following a standard Poisson process. For oblate ellip-

soids, they were uncorrelated, equisized particles of revolu-

tion with the aspect ratio, e being defined as the radius of

revolution, r divided by the half thickness, t. For elliptical

plates, e is defined as the ratio of the major axis length, a, to

the minor axis length, b. Therefore, in both cases we have

e� 1.

For oblate ellipsoids, a site percolation problem was for-

mulated, i.e., the locations of the sites relative to each ellip-

soidal surface were examined. Those sites in the interior of

at least one ellipsoid were labeled as “absent,” whereas the

remaining sites were labeled as “present.” The present sites

were therefore a collection of those sites in the void space of

the system, and the percolation path was sought for those

sites accordingly. The lattice system was binned based on

the locations and sizes of the ellipsoids. Only those sites

located inside the “bin” were examined for their coordinates

relative to the ellipsoid. For a site whose position vector is r,

and an ellipsoid specified by the location r0 of its center, as

well as the orientation angle x in space, we define a contact
function F (Ref. 21) whose value < 1 for r inside the

ellipsoid A; F¼ 1 for r located on the surface of A; and

F> 1 for r outside A

Fðr� r0;xÞ ¼ ðr� r0ÞTA�1ðr� r0Þ; (1)

wherein T indicates the transpose operator, and

AðxÞ ¼
X3

i¼1

RiðxÞRT
i ðxÞ; (2)

where Ri (i¼ 1, 2, 3) are the vectors comprising the

semiaxes.

For elliptical thin plates, however, a site percolation

formulation would be inappropriate since a plate has zero

volume and there would be no sites encompassed by any

plate. The percolation problem was therefore formulated

as a bond percolation system instead. The location of each

bond, i.e., the line segment in the lattice system, was com-

pared to the elliptical surface equations. An intersection

between a bond and an elliptical surface would indicate a

block in the percolation pathway; therefore, the bond was

labeled as “absent” otherwise it was “present.” The pair-

wise comparison was repeated exhaustively for all bonds

and plates. In the resulting lattice system, all the “absent”

bonds were removed and the percolation network was

formed by those “present” bonds only. The intersection

criteria involve the transformation of the global coordinate

system into a local system aligned with the elliptical sur-

face. The same “binning” technique was applied here, i.e.,

the lattice system was divided into small domains encom-

passing the extreme locations of each elliptical plate, and

only those bonds located inside the bin were examined for

their relative positions. In this way, the computational

effort associated with the pairwise comparisons was

minimized.

B. Percolation algorithm

For both ellipsoids and plates, the contact functions

between the particles and the bonds/sites have been validated

by graphically realizing the particles on computers followed

by an inspection of their spatial locations relative to an arbi-

trary bond/site. A number of random realizations have been

examined before the computational algorithms were imple-

mented for the subsequent detection of percolation.

To find the percolation path in the resulting lattice

network, a simulation scheme altered from the burning
algorithm22,23 was implemented. In particular, the sites or

bonds located on an arbitrary side of the simulation do-

main were first identified. The connections between these

sites/bonds and the adjacent ones in the system were then

examined. For the site percolation system, each site had

six neighboring sites, whereas for the bond percolation

problem each bond had ten neighboring bonds. The con-

nections were progressively examined and the process was

repeated until no additional connections were found. When

the process stopped, the system was detected as percolated
if at least one site/bond on the opposite side of the simula-

tion domain was found to be part of the interconnected
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cluster. The process was intrinsically probabilistic for a

finite system and the probability of percolation was deter-

mined as simply the ratio of the percolating cases to the

total number of simulations performed. Since the probabil-

istic variation of the results depended on the particle size

and number, an algorithm was developed to make the iter-

ation process rather efficient. Specifically, the number of

realization was variable depending on the particle diame-

ter. This treatment was able to reduce the statistical varia-

tion in the simulation results thus improved the numerical

accuracy. If the particle size approached zero, the result

would be close to the threshold at which an infinite system

percolates.

C. Definitions of void percolation threshold

The percolation threshold of the ellipsoidal system can

conveniently be defined as the volume fraction of the ellip-

soids, or an invariant n defined by

n ¼ nV0 ¼
4

3
npr2t; (3)

where n is the particle density, i.e., the number of particles

per unit volume, V0 is the volume of a single ellipsoid, r is

the radius of revolution, t is the half thickness, r� t. It should

be pointed out that n is related to the void volume fraction f
according to f ¼ e�n.

The definition of the percolation threshold for elliptical

plates should be consistent with that of the equivalent three-

dimensional systems rather than planar systems.24 We define

the following variable to measure the percolation threshold

for thin elliptical plates:

g ¼ 4

3
n pR3 (4)

and

A0 ¼ pR2 ¼ pab; (5)

where R is the equivalent radius; a and b are the semi-axis

lengths of ellipse; n is the plate number per unit volume; A0

is the area of a single ellipse. To make the simulation results

comparable between ellipsoids and ellipses, especially in the

limiting case when an oblate ellipsoid of revolution is

reduced to a thin disk, an alternative definition of percolation

threshold in terms of g in Eq. (4) has been introduced for

ellipsoids as well. Therefore, n and g are simply two differ-

ent, but equivalent manners to define percolation threshold

of ellipsoids. However, for ellipsoids, "R" should be inter-

preted as the radius of revolution "r" rather than the equiva-

lent radius of ellipses defined in Eq. (5). Clearly, the

relationship between n and g for oblate ellipsoids can be

expressed as follows:

g ¼ en ¼ r

t
n ¼ R

t
n: (6)

Therefore, given one of the two thresholds, the other can be

inferred readily.

III. RESULTS

A. Determination of void percolation thresholds

Figures 1 and 2 show the visualized computational mod-

els of oblate ellipsoids and elliptical plates, respectively. In

each figure, one hundred equisized particles are generated on

the computer forming an interconnected, random network

inside a unit cell. These graphs are presented for visualiza-

tion only, with the particle size being exaggerated and the

particle numbers being much fewer than the actual numbers

generated in the simulations. In real simulations, the radius

of revolution (r) for ellipsoids and the equivalent radius (R)

of ellipses were fixed to 0.015 and 0.03, respectively, in

order to minimize the scaling effects. This resulted in a total

particle number of 100 000–400 000 depending on the parti-

cle aspect ratio in each realization near the percolation

threshold. The corresponding computational time was about

10–30 min for percolation detection in a single realization on

a standard Intel Core Duo processor.

Apparently, the percolation probability is dependent on

the particle density. To estimate the percolation threshold,

the percolation probability was calculated with a subse-

quently increasing particle density from zero to a value sig-

nificantly above the percolation point. The simulation was

repeated fifty times in each case to compute the percolation

probability for a specific total number of particles. The perco-

lation threshold was then estimated from the particle density

at a percolation probability of 50% by interpolation. Finally,

this procedure was repeated for different pixel numbers p. In

the current study, five different p’s: 300, 400, 500, 600, and

700 were chosen to estimate the percolation threshold by

extrapolation, as illustrated in Fig. 3(a). The percolation

value was plotted as a function of p and the curve fitting tech-

nique was applied to obtain a parabola, whose constant term

determines the percolation threshold when p approaches

infinity. Alternatively, the data can be fit to a power law

FIG. 1. Computer-generated 100 random oblate ellipsoids of aspect ratio 5.
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function as shown in Fig. 3(b). In general, it has been found

that a polynomial curving fitting consistently yields a better

accuracy in terms of the norms of the residuals, and there-

fore, this method has been used in the current study. In fact,

either a polynomial fit or a power law fit yields an almost lin-

ear relationship when 1/p approaches zero. Consequently, the

results obtained from both curve fitting schemes do not differ

much (g¼ 22.86 from the parabola versus g¼ 22.30 from the

power law).

The procedure was then repeated for different aspect

ratios to obtain the percolation threshold as a function of e. A

linear extrapolating function may also be applicable here but

would reduce the numerical accuracy. The above values of

pixel numbers were chosen due to the considerations on the

computer memory and the processor speed.

B. Void percolation thresholds of oblate ellipsoids

For oblate ellipsoids, the simulation results are presented

in Figs. 4 and 5, and also tabulated in Table I along with the

error estimation. The errors were estimated from the norms of

the residuals via a standard error analysis of polynomial curve

fit. It can be seen that the percolation threshold g or n changes

with the aspect ratio e. But the relationship is clearly nonlinear.

When the ellipsoids degenerate to spheres, the result is

g¼ n¼ 3.515 6 0.006. This is very close to the precise solu-

tions reported in the literature16,17 (g¼ 3.503 6 0.010). This

result also converges to the limiting case for prolate particles

reported previously.18 When e increases to 10, n becomes

1.542 and g is 15.42. Because the equivalent radius is main-

tained constant, the new value of n indicates that less than half

of the particles are needed to reach void percolation in compar-

ison with spheres. The relationship between the percolation

threshold and aspect ratio was approximated in terms of poly-

nomial functions. Although other forms of approximation,

such as exponential function, logarithm functions, or power

law functions are also possible, it is found that the polynomial

fitting yields noticeably small standard deviations and there-

fore has been chosen to present the results in the current study.

The dashed curves in Figs. 4 and 5 are fourth order polynomial

FIG. 2. Computer-generated 100 random elliptical thin plates of aspect ratio 3.

FIG. 3. Void percolation threshold of circular disks as a function of 1/p
(where p is the pixel number per side), determined from (a) parabolic curve

fitting; (b) power law curving fitting.

FIG. 4. Void percolation threshold, n, of oblate ellipsoids as a function of

particle aspect ratio, e.
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approximations by curve fitting for ellipsoids, with the form of

n as follows:

n ¼� 0:0004053e4 þ 0:009462e3 � 0:05941e2

� 0:16627eþ 3:7344; 1 � e � 10 (7)

and g as follows:

g ¼� 0:001482e4 þ 0:04828e3 � 0:6353e2

þ 4:601e� 0:5102; 1 � e � 10: (8)

In comparison with prolate ellipsoids, it has been

noticed that the void percolation threshold of oblate particles

has a much stronger dependence on the particle aspect ratio.

For example, g increases by more than three times when e
increases from 1 to 8 for oblate ellipsoids. Meanwhile the

same g has changed by approximately 10% for prolate ellip-

soids in the same situation.18 Therefore, we need to pay spe-

cial attention to the effects of aspect ratio on the void

percolation of oblate particles.

Noted that Eqs. (7) and (8) are valid in the range of e
between 1 and 10 only. It is clear, however, that g will vary

between the extreme values for oblate ellipsoids of e ranging

between 10 and infinity. It has been found that a Pade

approximant can cover the entire range of the aspect ratio

and the result is following:

g ¼ �0:7467þ 5:0357e
1þ 0:2203e

; 1 � e � 1; (9)

where the three constants are determined from the data

points at e¼ 1, 2, and1. Note that the last data point can be

obtained from the circular plate problem. The result from

this Pade approximation can be seen in Fig. 5.

C. Void percolation thresholds of elliptical thin plates

For elliptical plates, the simulation results are presented

in Fig. 6 and tabulated in Table II. They show that the perco-

lation threshold increases with the aspect ratio, meanwhile it

follows an approximately linear relationship with the aspect

ratio for large values of e. When the elliptical plates are

reduced to circular disks, g¼ 22.86. As e increases to 10, g
becomes 57.34, which is 2.51 times greater than the thresh-

old at e¼ 1. These results have also been approximated as a

fourth order polynomial by curve fitting with the following

expression:

g ¼ 0:004170e4 � 0:1108e3 þ 1:020e2

þ 0:2861eþ 21:64; 1 � e � 10: (10)

For an aspect ratio greater than 10, an approximate for-

mula is presented here for providing an asymptotic limit:

g ¼ 3:9080eþ 18:267; e > 10: (11)

Thin disks can be considered as a degenerate geometry

from oblate ellipsoids of zero thickness or infinite aspect ra-

tio. Therefore, the percolation threshold in terms of g for

oblate ellipsoids of large aspect ratios should converge to the

thin disks solution. From Fig. 5, it is seen g¼ 15.42 for

e¼ 10, which falls below the upper bound given by e¼ 1,

g¼ 22.86 in Fig. 6. When the aspect ratio of ellipsoids

increases beyond 10, it is expected that g will also increase

according to the trend of g shown in Fig. 5. In the limit, the

FIG. 5. Void percolation threshold, g, of oblate ellipsoids as a function of

particle aspect ratio, e.

TABLE I. Void percolation thresholds of oblate ellipsoids.

e 1 2 3 4 5 6 7 8 9 10

g 3.515 6 0.006 6.478 6 0.008 8.768 6 0.009 10.47 6 0.02 11.70 6 0.02 12.75 6 0.04 13.51 6 0.02 14.33 6 0.02 14.90 6 0.03 15.42 6 0.01

n 3.515 6 0.006 3.239 6 0.004 2.923 6 0.003 2.618 6 0.005 2.340 6 0.004 2.125 6 0.007 1.930 6 0.003 1.791 6 0.003 1.656 6 0.003 1.542 6 0.001

FIG. 6. Void percolation threshold, g, of elliptical thin plates as a function

of plate aspect ratio, e.
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result will converge to the value of circular disks g¼ 22.86

as e approaches infinity. Therefore, Figs. 5 and 6 indeed

demonstrate the connection between the circular disks and

the ellipsoids in the limiting case.

These results for both oblate ellipsoids and elliptical

plates indicate that not only the volume fractions but also the

aspect ratio plays an important role in void percolation. It

has been shown that it is generally not appropriate to treat

the inclusions as either spheres or circular disks, even when

the aspect ratio is not very far from unity. It should be

pointed out that in the above simulations the minor axis of a

particle should contain a reasonable number of sites/bonds to

ensure the computational accuracy. Consequently, the major

axis must not be too long. It has therefore imposed a restric-

tion on the maximum aspect ratio that the current simulation

technique is able to handle. This is the main reason that the

particle aspect ratio discussed above was limited to those

values below 10.

IV. CONCLUSIONS

The void percolation thresholds were computed using a

lattice mapping technique for both oblate ellipsoids and

elliptical thin plates in three-dimensional space. The effects

of the aspect ratio for some representative values between 1

and 10 were investigated in both cases. The results were

expressed in the form of polynomial functions and Pade

approximants. Agreements have been found between the

computational results with those found the literature in sev-

eral limiting cases. The results show that the aspect ratio

must be taken into consideration for oblate particles in void

percolation systems. Also the dependence of the void perco-

lation threshold on the aspect ratio of oblate systems is much

stronger than that of prolate systems previously investigated.

These findings are useful in providing an insight to the mate-

rial density or porosity needed to reach a void percolation in

some important applications related to multiscale advanced

materials. The same lattice mapping technique may also be

applied to percolation problems with particulate inclusions

of more general shapes. The physical properties such as the

electrical and thermal conductivities in the void phase can

generally be expressed in the power law forms, which are

similar to those of other heterogeneous random materials.

The determinations of the required parameters in the power

law functions, however, require additional solution techni-

ques, such as the finite element scheme or the variational the-

ories.25 This issue will be addressed in the authors’ future

studies.
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