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a b s t r a c t

An idealized model consisting of a thermal conductor and a thermal insulator separated by a thin layer of
lubricating fluid is developed to investigate thermoelastic instability with fluid lubrication. The
governing equations are solved for the critical speed. A new dimensionless parameter H0 is defined to
predict the critical speed. Furthermore, the effects of various materials and the wavelength of
perturbations on thermoelastic instability are discussed. It has been found that the migration speed of
hot spots is nonzero, but typically very slow compared with the sliding speed and the relation between
the critical speed and the fluid film thickness is non-linear. In addition, a material with low elastic
modulus, low thermal expansion coefficient and high thermal conductivity will experience a high
critical speed.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Various kinds of mechanical frictional components with lubri-
cation, such as sealing parts, bearings and clutches, are impres-
sionable to one type of the local high temperature on the surface
named hot spots which may cause a surface damage. Hot spots are
caused by a type of instability during the slipping and friction
process when the sliding speed is in excess of a threshold value
that relies on the wavelength of the perturbation in the system.
This instability, which is caused by frictional heat, elastic deforma-
tion and cooling effect, is named thermoelastic instability or TEI.
This phenomenon was first introduced by Barber [1]. A theoretical
model composed of two solid surfaces sliding with each other was
developed to investigate TEI in frictional systems. A perturbation
of the nominally uniform contact pressure on the interface of the
rubbing pair will lead to a nonuniform distribution of frictional
heat and a nonuniform temperature field. The subsequent thermal
expansion will transform the distribution of the contact pressure
in turn. This process that moves in a loop causes hot spots in some
cases. A multitude of researches have been done for TEI in dry
frictional systems [2–5].

For frictional parts with lubrication, the heat generation that
has a significant influence on TEI makes a conspicuous difference
from the non-lubricated friction. During the working process, the
heat in wet frictional parts is produced totally or partly by film
ll rights reserved.
shearing. Though TEI may be alleviated because of not only the
less quantity of heat compared with dry fiction but also the
cooling effect of fluid, hot spots can still appear on friction surfaces
under certain conditions. Evidence of hot spots from an experi-
ment for wet multi-disk clutches is shown in Fig. 1, where the dark
areas represent the regions that have experienced high local
temperature, i.e., hot spots.

TEI in frictional systems with lubrication was first examined by
Banerjee and Burton [6] who developed a theoretical model
composed of a thermal conductor and an insulator sliding along
the interface in the presence of a liquid lubricating film.
An equation for calculating the critical speed of lubricative face type
seals was proposed by Banerjee as Vc ¼ h0λ

ffiffiffiffiffiffiffiffiffiffiffi
K=μα

p
, where Vc , h0, μ,

λ, K, and α represent the critical speed, nominal fluid film
thickness, fluid viscosity, wavenumber of the perturbation, ther-
mal conductivity and thermal expansion coefficient of metal,
respectively. Then Jang and Khonsari [7–9] extend Banerjee's work
by considering surface roughness.

According to their work, we may make a prediction of the
critical speed for wet frictional mechanical components during
fluid lubrication period. However their estimation still shows
several deficiencies, e.g., their results are mainly based upon
stationary wave solutions, i.e., the perturbation is presumed to
be non-moving relative to the conductor. In reality, the perturba-
tion moves at a relatively low speed with respect to the good
thermal conductor, but not zero. Under an assumption of stationary
perturbation, the fluid pressure and convection effects become
small, therefore this assumption, non-moving perturbation, may
lead to neglecting some significant impact factors on TEI and the
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Fig. 1. Evidence of hot spots in a wet multi-disk clutch.

Fig. 2. Schematic diagram.
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solution can be viewed as an approximate prediction for the
critical speed.

In the current paper, we will examine the influence of lubricant
film thickness on the critical speed of TEI on the basis of the
moving solutions and predict a reasonable critical speed. For the
purpose of evaluating the effect of finite disk thickness on TEI in
the dry fiction system, Lee and Barber [3] introduced a model
consisting of two semi-infinite planes and a layer with a finite
thickness. Their results, which have been confirmed by Yi et al.
[10], indicate that with the layer geometry there is a preferred
wavelength of TEI. In an attempt to examine the effect of
lubricating fluid film thickness on TEI, we introduce a fluid with
finite thickness between the friction surfaces. In Lee's work, there
is a minimum critical speed when λa¼ 0:2, where a represents the
half layer thickness. In this paper, we will demonstrate there is
also a minimum point, which is being driven by the film thickness,
on the critical speed curve.
2. Model

Taking the automotive wet clutch as our research object, the
friction disk is often composed of a type of paper based material
while the mating disk is made of steel. Since the thermal
conductivity of the paper based material is about 10 times smaller
than that of steel, we can make a hypothesis that the wet clutch
system can be simplified as a thermal conductor–insulator system.
This assumption has been adopted by Banerjee [6] and Jang [8] to
examine the critical speed of the facing type seal.

A simplified schematic model is shown in Fig. 2. Following Lee's
work [3], we introduce a spatially sinusoidal perturbation, moving
at a speed c to the positive x-direction, in a fluid pressure, which
grows exponentially with time. More general patterns of pertur-
bations can be obtained by means of superposition, which is
equivalent to the Fourier transform. The pressure perturbation
will lead to other perturbations in the system, e.g., stresses,
temperature fields, fluid thickness, therefore all perturbations will
have a similar expression. If we introduce a coordinate system (x,y)
moving with the perturbation field, the total fluid pressure can be
represented as

p0þRfp1 expðbtþ ıλxÞg ð1Þ
where p0, p1, b, and t represent the unperturbed pressure,
perturbed pressure, growth rate of the perturbation and time
respectively, ı¼

ffiffiffiffiffiffi
−1

p
.

We assume that the sinusoidal surface (conductor) moves at a
speed V to the positive x-direction while the plane surface
(insulator) is stationary, as shown in Fig. 2. With respect to the
two disks, the relative velocities of the perturbation are, sepa-
rately, c1 ¼ c and c2 ¼ c−V to the positive x-direction. In order to
simplify the expression of perturbations, we introduce two local
coordinate systems: ðx1,y1Þ and ðx2,y2Þ that are standing with disk
1 and disk 2 separately, as shown in Fig. 2. The relations of
different coordinate systems are

x1 ¼ xþc1t, x2 ¼ xþc2t ð2Þ

y1 ¼ yþh0, y2 ¼ y ð3Þ

h¼ h0þRfh1 expðbtþ ıλxÞg ð4Þ
where h, h0, and h1 represent, respectively, the entire fluid film
thickness, the nominal fluid film thickness and the perturbation of
fluid film thickness.

The gap between these two surfaces is full of lubricating fluid
with constant viscosity. Our research is based on the fluid
lubrication condition and the influence of surface roughness is
neglected. To satisfy the assumption, the fluid thickness needs to
be at least three times greater than the surface roughness, i.e.,
h0≥3Ra [8], where Ra represents the surface roughness.

Some assumptions for fluid have been made: 1, the flow is
laminar; 2, the gravity and inertia forces can be ignored; 3, the
compressibility of fluid is negligible; 4, the fluid is Newtonian; 5,
the fluid pressure is constant across the film thickness; and 6,
there is no slip between the fluid and the surfaces of disks.

2.1. Fluid pressure and stress

In the research on fluid, we will use the local coordinate system
ðx1,y1Þ during calculation.

2.1.1. Equilibrium
On the basis of previous assumptions, the Navier–Stokes

equation can be simplified to a two-dimensional equation, as

∂2vx
∂y21

¼ 1
μ

∂p
∂x1

, ð5Þ

where vx, μ, and p are, respectively, the fluid velocity in the
x-direction, the viscosity, and the pressure of fluid. According to
Eq. (1), the pressure perturbation can be expressed as
Rfp1 expðbtþ ıλðx1−c1tÞÞg. Hence the simplified Navier–Stokes
equation (5) can be rewritten as

∂2vx
∂y21

¼R
ıλp1
μ

expðbtþ ıλðx1−c1tÞÞ
� �

: ð6Þ
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For the purpose of facilitating the derivation process, we define
a new dimensionless variable η

η¼ y1
h
, y1 ¼ hη: ð7Þ

Solving Eq. (6), we can obtain

vxðx1,ηÞ ¼R CηþD
�
þ ıh2λp1η

2

2μ
þAηþB

 !
expðbtþ ıλðx1−c1tÞÞ

)
ð8Þ

Since p1 is already a first order perturbation term, we can replace h
by a zero order term h0.

As the insulator is stationary and the conductor is moving at a
speed V to the positive x-direction, the boundary conditions of
fluid flow are vxðx1,0Þ ¼ 0, vxðx1,1Þ ¼ V , which imply

DþRfB expðbtþ ıλðx1−c1tÞÞg ¼ 0 ð9Þ

CþR
ıh20λp1
2μ

þA

 !
expðbtþ ıλðx1−c1tÞÞ

( )
¼ V ð10Þ

giving

A¼ −
ıh2

0λp1
2μ

, B¼ 0, C ¼ V , D¼ 0: ð11Þ

Hence, the solution of the fluid velocity is

vxðx1,ηÞ ¼R Vη−
ıh2

0λp1ηð1−ηÞ
2μ

 !
expðbtþ ıλðx1−c1tÞÞ

( )
: ð12Þ
2.1.2. Continuity
The total fluid flow passing a given control volume is

qðx1Þ ¼
Z h

0
vxðx1,y1Þ dy1 ¼ h

Z 1

0
vxðx1,ηÞ dη ð13Þ

where q represents the volume rate of flow in unit time. Neglect-
ing the second order of the perturbation and substituting Eq. (12)
into Eq. (13), the fluid flow can be written as

qðx1Þ ¼R
V
2

h0þh1 expðbtþ ıλðx1−c1tÞÞ
� ��

−
ıh30λp1
12μ

 !
expðbtþ ıλðx1−c1tÞÞ

)
ð14Þ

We consider a small control volume shown in Fig. 3, the
volume of which is hΔ. Since the sinusoidal surface is moving at
a speed V to the positive x-direction, the control volume is
Fig. 3. Fluid flow and continuity.
decreasing at a rate

VΔ
∂h
∂x1

: ð15Þ

Since the fluid is incompressible, the flow rate out of this
volume must exceed that into it, implying

qðx1þΔÞ−qðx1Þ ¼ VΔ
∂h
∂x1

ð16Þ

and hence

∂q
∂x1

¼ V
∂h
∂x1

: ð17Þ

Substituting q from Eq. (14), then we have the pressure
perturbation as

p1 ¼
6ıμVh1
λh30

ð18Þ

Hence, the perturbation of normal stress on the boundary
between the conductor and the fluid is

s1ðy¼ 0Þ ¼ −Rfp1 expðbtþ ıλxÞg ¼−R
6ıμVh1
λh3

0

expðbtþ ıλxÞ
( )

:

ð19Þ
Substituting the pressure perturbation (18) into Eq. (12), the

velocity of fluid can be written as

vxðx1,ηÞ ¼R Vηþ 3h1Vηð1−ηÞ
h0

� 	
expðbtþ ıλðx1−c1tÞÞ

� �
: ð20Þ
2.1.3. Shear traction
On the basis of Newton's Law of Viscosity, the relation between

the shear traction and the fluid velocity can be expressed as
(neglecting second and higher order terms)

τ1 ¼ μ
∂vx
∂y1

¼ μ
∂vx
∂η

∂η
∂y1

¼ μR
V
h0

þ 2h1Vð1−3ηÞ expðbtþ ıλðx1−c1tÞÞ
h20

( )
: ð21Þ

In particular, at the interface where η¼ 1, the shear stress is

τ1ðy¼ 0Þ ¼−R
4μVh1 expðbtþ ıλxÞ

h20

( )
: ð22Þ
2.2. Fluid heat flow

The perturbation of viscous heat dissipated in the fluid can be
expressed as [8]

Q1 ¼ μ

Z h

0

∂vx
∂y1

� 	2

−
dv0
dy1

� 	2
 !

dy1

¼−R
2μV2h1

h2
0

expðbtþ ıλðx1−c1tÞÞ
( )

ð23Þ

where v0 denotes the unperturbed velocity term, v0 ¼ ðVy1Þ=h0.
During the calculation, we neglect the second and higher order of
the perturbation.

Owing to the assumption that the friction disk is an insulator,
all heat fluxes would flow into the mating disk. Hence the heat
flux on the interface is

Q1ðy¼ 0Þ ¼−R
2μV2h1

h20
expðbtþ ıλxÞ

( )
ð24Þ
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2.3. Temperature field and heat flux in fluid

A suitable form for temperature perturbation in the fluid can be
written as [6]

T1ðx1,y1Þ ¼RfðTAþTBy1þTCy21Þ expðbtþ ıλðx1−c1tÞÞg ð25Þ

Hence the perturbation of heat flux in the fluid can be
expressed as

Q1 ¼ −Kf
∂T1

∂y1
¼ −RfKf ðTBþ2TCy1Þ expðbtþ ıλðx1−c1tÞÞg ð26Þ

where Kf is the thermal conductivity of fluid. At the boundary
between the conductor and the fluid, neglecting second and
higher order terms, the perturbations of temperature field and
heat flux can be expressed as, respectively,

T1ðy¼ 0Þ ¼RfðTAþTBh0þTCh
2
0Þ expðbtþ ıλðx1−c1tÞÞg ð27Þ

Q1ðy¼ 0Þ ¼ −RfKf ðTBþ2TCh0Þ expðbtþ ıλðx1−c1tÞÞg ð28Þ
Meanwhile, since all dissipated heat flow into the conductor,

the value of heat flux perturbation at the interface between the
insulator and fluid must be zero, implying

Q1ðy¼−hÞ ¼−RfKf TB expðbtþ ıλðx1−c1tÞÞg ¼ 0 ð29Þ

2.4. Temperature field and heat flux in the conductor

In the research on the conductor, we will use the local
coordinate system ðx2,y2Þ during calculation. The temperature
field in the conductor must satisfy the heat conduction equation

∂2T
∂x22

þ ∂2T
∂y22

¼ 1
k
∂T
∂t

ð30Þ

where k represents the thermal diffusivity of the conductor

k¼ K
ρcp

ð31Þ

K, ρ, and cp are the thermal conductivity, the density, and the
specific heat of the conductor, respectively. We can assume that
the temperature perturbation can be expressed as

T2ðy2Þ ¼RfFðy2Þ expðbtþ ıλðx2−c2tÞÞg ð32Þ
Substituting this equation into Eq. (30) and solving it, with the

boundary condition y2→∞, T2→0, we can obtain a suitable form of
the temperature field perturbation [3]

T2ðy2Þ ¼RfT0 expð−my2Þ expðbtþ ıλxÞg ð33Þ
where

m¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þ γ

k

r
, γ ¼ b−ıλc2 ð34Þ

T0 is an unknown constant.
Accordingly, the heat flux perturbation at the interface

between the lubricating fluid and the conductor is

Q2ðy¼ 0Þ ¼ −K
∂T2

∂y2
ðy2 ¼ 0Þ ¼RfKT0m expðbtþ ıλxÞg ð35Þ

2.5. Perturbation of film thickness

Then we consider the temperature and heat flux boundary
conditions at the interface, which can be written as

y¼ 0 : T1 ¼ T2, Q1 ¼Q2; y¼−h : Q1 ¼ 0 ð36Þ
Combined with Eqs. (24) and (27)–(29), the perturbation of the
fluid film thickness can be solved as

h1 ¼
h2
0KmT0

2μV2 ð37Þ

Consequently, the perturbation of the fluid pressure can be
rewritten as

R
3ıKmT0

λh0V
expðbtþ ıλðx1−c1tÞÞ

� �
: ð38Þ

Those equations imply that when the nominal fluid film
thickness h0 increases, the perturbation of the film thickness h1
increases accordingly. Meanwhile, the perturbation of the fluid
pressure decreases with increasing h0. These two opposite effects
on the perturbations may lead to a phenomenon that when the
nominal film thickness equals a particular value, the friction
system will be most sensitive to TEI, i.e., the critical speed will
become minimal. This prediction will be testified in Section 3.

Furthermore, the energy balance equation on the interface can
be written as

−R
2μV2h1

h20
expðbtþ ıλxÞ

( )
¼RfKT0m expðbtþ ıλxÞg ð39Þ
2.6. Thermoelastic stresses and displacements

For a thermoelastic problem, the normal displacements and
stresses can be obtained by superposing a particular solution
corresponding to a strain function ψ [11, Chapter 22] to the
isothermal solutions A and D of Green and Zerna [12], as

uy ¼
1
2G

∂ψ
∂y

þ 1
2G

∂ϕ
∂y

þ 1
2G

y
∂ω
∂y

−ð3−4νÞω
� 	

ð40Þ

sy ¼−
∂2ψ
∂x2

−
∂2ϕ
∂x2

þy
∂2ω
∂y2

−2ð1−νÞ ∂ω
∂y

ð41Þ

τxy ¼
∂2ψ
∂x∂y

þ ∂2ϕ
∂x∂y

þy
∂2ω
∂x∂y

−ð1−2νÞ ∂ω
∂x

ð42Þ

where uy, sy, and τxy represent, respectively, the displacement in
the y-direction, the normal stress in the y-direction and the shear
stress. The parameter ϕ, ω and strain function ψ can be expressed
as [3]

ϕ¼RfM expðıλx−λyÞg ð43Þ

ω¼RfN expðıλx−λyÞg ð44Þ

ψ ¼R
βT0

m2−λ2
expðbtþ ıλx−myÞ

� �
ð45Þ

where M and N are the arbitrary complex constants and β can be
written as

β¼ 2Gαð1þνÞ
1−ν

ð46Þ

where α, G, and ν represent, respectively, the thermal expansion
coefficient, the shear modulus, and Poisson's ratio of the
conductor.

Substituting Eqs. (43)–(45) into (40)–(42), we can obtain the
thermal normal displacements and stress at the interface as

uyð0Þ ¼R
mβT0

2Gðλ2−m2Þ expðbtþ ıλxÞ− Mλ

2G
þ ð3−4νÞN

2G

� 	
expðıλxÞ

� �
ð47Þ



Table 1
Material properties of the conductor.

Material E (N/m2�1011) ν α (1C−1�10−5) K (W/m 1C) k (m2/s�10−5)

Steel 1.6 0.29 1.27 45.9 1.208
Cast iron 1.25 0.25 1.2 54 1.298

Table 2
Surface roughness of the mating disk.

Engagement
times

0 100 500 800 1000 1500

Roughness
(μm)

4.0632 3.1687 2.5168 2.5918 2.4911 2.2543
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syð0Þ ¼R −
λ2βT0

λ2−m2
expðbtþ ıλxÞþ Mλ2þ2ð1−νÞNλ
 �

expðıλxÞ
( )

ð48Þ

τxyð0Þ ¼R
iλmβT0

λ2−m2
expðbtþ ıλxÞ−ðıMλ2þ ıð1−2 νÞNλÞ expðıλxÞ

� �
ð49Þ

With regard to a TEI problem, all the perturbations in the
system have the same growth rate b, e.g. perturbations can be
expressed as Rff ðyÞ expðbtþ ıλxÞg. When the relative velocity of the
rubbing pair is less than the critical speed, the exponential growth
rate bo0 and all the perturbations will die out with time.
In contrast, the system will become unstable (b > 0) on condition
that the relative velocity exceeds the critical speed. Thus we can
calculate the speed threshold when the exponential growth rate
b¼0. At the interface, the perturbations in the displacement, the
fluid film thickness, the normal stress, and the shear stress, must
equal each other, thus the mechanical boundary conditions are

uyð0Þ ¼ h1, syð0Þ ¼ sðy¼ 0Þ, τxyð0Þ ¼ τðy¼ 0Þ
With Eqs. (19), (22) and (47)–(49) plus the heat transfer

boundary condition equation (39), we can construct the homo-
geneous equations as

SU¼ 0

where

S¼

−1 −λ
2G − 3−4ν

2G
mβ

2Gðλ2−m2Þ
6ıμV
λh30

λ2 2ð1−νÞλ − βλ2

λ2−m2

4μV
h20

−ıλ2 −ıð1−2νÞλ ıβλm
λ2−m2

− 2μV2

h20
0 0 −mK

2
666666664

3
777777775

U¼ ðh1 M N T0Þ′

In the next step, we transform the calculation to an eigenvalue
problem by presenting a necessary condition of the linear equa-
tions existing a non-zero solution that the determinant of the
coefficient matrix must equal zero, i.e., detðSÞ ¼ 0. Hence we can
obtain a complex equation as

ıλ3mKh3
0Gþð2ðmð2ν−1ÞKþ ıβð−1þνÞVÞVμþ ım2KGh2

0Þh0λ
2

þ4mKμððν−1
2 Þh0m−3

2 νþ3
2ÞVλ−6μVm2Kð−1þνÞ ¼ 0 ð50Þ

Then we define the following dimensionless parameters in
efforts to rewrite Eq. (50) in a dimensionless form

mn ¼ m
λ
, Vn ¼ V

kλ
ð51Þ

cn2 ¼
c2
kλ

, βn ¼ kβ
K

ð52Þ

H¼ h0λ, H0 ¼
h20λ

ffiffiffiffi
G

p
ffiffiffiffiffi
μk

p ð53Þ

The dimensionless determinant can be expressed as

ımnHH2
0þ2HðmnVnð2ν−1ÞH2þ ıH2Vn2βnðν−1Þþ1

2ıH
2
0m

n2Þ
þ2VnmnHðHmnð2ν−1Þ−3ðν−1ÞÞ−6HVnmn2ðν−1Þ ¼ 0 ð54Þ
When the growth rate b¼0, we assume the dimensionless

parameter mn as

mn ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1−ıcn2

q
¼ ξþ ıζ ð55Þ

We may notice that the sign of cn2 stands for the direction of the
migration speed, so changing it has no effect on the absolute value
of our results. Hence we make an assumption that the dimension-
less migration speed cn2o0. Under this situation, ξ and ζ can be
expressed as

ξ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðcn2Þ2

q
Þ

r
ð56Þ

ζ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ð−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðcn2Þ2

q
Þ

r
ð57Þ

Then we can separate the real and imaginary parts of Eq. (54),
both of which must equal zero. Hence we can obtain two real
numbers as

2VnH½ðHð2ν−1Þ−3ðν−1ÞÞðξþξ2−ζ2Þ�−H2
0ζð1þ2ξÞ ¼ 0 ð58Þ

2VnH½HVnβnðν−1Þþζð1þ2ξÞðHð2ν−1Þ−3ðν−1ÞÞ�
þH2

0ðξþξ2−ζ2Þ ¼ 0 ð59Þ

For given values of all the system parameters, the nominal film
thickness h0 and the wavenumber of the perturbation λ, the
dimensionless critical speed Vn and the dimensionless migration
speed cn2 can be solved by those two equations.
3. Results

Steel is almost always used for the mating disks in wet plate
clutches, the values of the material parameters for a widely used
steel are shown in Table 1. Furthermore, we select a typical
lubricating fluid, the viscosity of which is 0.0968 Pa s.

In order to satisfy our fluid lubrication assumptions, the
nominal fluid film thickness h0≥3Ra. An experiment has been
designed for the purpose of obtaining the surface roughness of a
wet clutch during different using stages. The experimental data
are shown in Table 2. On the basis of Table 2, the nominal film
thickness h0≥15 μm. Hence, we assign three different values for
the fluid film thickness, which are h0 ¼ 20 μm, 30 μm, 40 μm, and
solve Eqs. (58) and (59) to obtain the dimensionless critical speed
Vn and the dimensionless migration speed cn2. The results are
shown in Figs. 4 and 5, respectively.

According to Fig. 4, two significant conclusions can be deduced.
Primarily, the critical speed is within the range of the working
speed of wet clutches. If we assume the film thickness h0 ¼ 40 μm
and the wavenumber λ¼ 40ð1=mÞ, the critical speed would be
6.7 m/s, which equals 640 RPM on condition that the mean radius
of the disk is 0.1 m. That critical speed is within the limits of the
working speed of most wet clutches, so the clutch can experience
TEI during the working process and hot spots will appear if the
process is long enough. This conclusion accords with our



Fig. 4. The relation between the dimensionless critical speed and H0.

Fig. 5. The relation between the dimensionless migration speed and H0.

Fig. 6. The dimensional critical speed.
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experimental result that hot spots would occur in time of regular
operations.

Secondly, for a given value of the fluid film thickness, it is
conspicuously that the critical speed changes with the wavenum-
ber (or the wavelength) of the perturbation. Additionally, there is a
minimum point for the curve when the wavelength equals a
preferred value. In other words, when the dimensionless para-
meter H0 equals a preferred value, i.e., h20λ equals a particular
value, the minimum critical speed will occur. This curve implies
that the system will become unstable under a perturbation with a
particular wavelength on condition that the film thickness is fixed.

On the basis of Fig. 4, the minimum dimensionless critical
speed occurs at about H0¼9.2 on the curve. Consequently, we can
predict that the fluid film thickness has a similar effect on TEI as
the disk thickness, which is a significant factor for TEI testified by
Lee and Barber [3].

Fig. 5 shows that the migration speed is indeed very small
compared with the critical speed, but not zero. It demonstrates
that the stationary solution, which is based on the assumption that
the migration speed is zero, is not accurate for TEI with fluid
lubrication. Furthermore, it is obvious that the migration speed
decreases with the enhancement of H0, which means the stationary
solution would be more reasonable when H0 is large.

In contrast, we compare our result with Barnejee's [6] critical
speed equation Vc ¼ h0λ

ffiffiffiffiffiffiffiffiffiffiffi
K=μα

p
. In his equation, the critical speed

is a linear function of the dimensionless parameter H ¼ h0λ.
A relationship between H and the critical speed Vc is shown in
Fig. 6, which implies that Vc would become a linear function when
H is sufficiently large. Hence, Figs. 5 and 6 can explain the reason
why our moving wave solution would become a linear function as
Banerjee and Burton's stationary wave solution [6] on condition
that H0 is large enough.
3.1. The effect of wavelength

According to Fig. 4, the critical speed is a function of H0. For a
given lubricating fluid thickness h0, the dimensionless parameter
H0 is proportional to the wavenumber λ, or inversely proportional
to the wavelength l, as

H0 ¼
h2
0λ

ffiffiffiffi
G

p
ffiffiffiffiffi
μk

p ¼ 2π
l
h20

ffiffiffiffi
G

p
ffiffiffiffiffi
μk

p ð60Þ

Hence

l¼ 2π
H0

h2
0

ffiffiffiffi
G

p
ffiffiffiffiffi
μk

p ð61Þ

where l represents both the wavelength and the spacing between
hot spots on the mating disk in the unstable state.

Fig. 4 shows that the critical speed has a minimum value when
H0≈9:2, demonstrating that the first thermoelastic instability is
caused by a perturbation that has a wavelength as l≈1:57� 108h2

0
according to Eq. (61).

In our theoretical model, we construct an assumption that the
size in the x-direction is infinite, which means that the circum-
ference of the mating disk must be long enough, i.e., that must be
longer than the wavelength of the perturbation. This restriction
can be expressed as

2π
lM

h20
ffiffiffiffi
G

p
ffiffiffiffiffi
μk

p oH0 ð62Þ

where lM represents the circumference of the mating disk.



Fig. 8. The critical speed for steel and cast iron.
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3.2. The effect of the fluid film thickness

During the actual working process of wet plate clutches, the
fluid film thickness is ever changing that has influence on the
critical speed. Therefore we will examine another important factor,
the film thickness. To find out the relationship between the film
thickness and the critical speed, we substitute some given values
of wavenumber λ¼ 40,50,60ð1=mÞ into Eqs. (58) and (59). Then
choosing steel shown in Table 1 as the material of the conductor
and fluid viscosity as μ¼ 0:0968 Pa s, we can obtain the critical
speed shown in Fig. 7. That figure illustrates that the system
preferred wavelength under which the critical speed is minimal is
determined by a given value of film thickness. In addition, the
system preferred number of hot spots is changing in time of the
working process since the film thickness varies.

From those curves in Fig. 7, we can conclude that the minimum
point of the dimensionless critical speed V=kλ varies with the
wavelength or the wavenumber of the perturbation. Moreover, as
shown in Fig. 4, when the dimensionless parameter H0 equals
some preferred values, the minimum critical speed will occur.
Hence, we can predict the critical speed depending on H0.
3.3. The effect of the material parameters

For different materials, such as steel and cast iron, the elastic
modulus, thermal conductivity and thermal expansion coefficient
may vary. In order to select an optimal material for the clutch
system, engineers must consider comprehensively of size, perfor-
mance, service life and stability in the design phase. Since
thermoelastic instability is a significant contributor to impact on
wet clutches, we will examine the effect of different materials on
TEI. In contrast, we select the cast iron as an alternative material
for the conductor, and values of its parameters are shown in
Table 1. The fluid viscosity is maintained as 0.0968 Pa s. Then we
define h0 ¼ 40 μm and make an comparison between different
materials of the mating disk, i.e. steel and cast iron, as shown in
Fig. 8.

It is obvious that the critical speed of cast iron is higher than
that of steel, which implies cast iron is a better material to avoid
TEI for wet clutches. Then we will examine the effect of material
properties on the critical speed to find out the reason why cast
iron is better.

Elastic modulus. A low elastic modulus can help alleviate the
non-uniformity of the contact pressure distribution, hence
decreases the tendency of TEI. This conclusion has been confirmed
Fig. 7. The effect of the fluid film thickness on the critical speed.
by both Anderson [13] with the experimental method and
Zagrodzki [14] with the analytical study.

Thermal expansion coefficient. A small thermal expansion coeffi-
cient has a similar effect as the elastic modulus to help alleviate
the non-uniformity of the contact pressure distribution. The
reason is that with the same temperature rise, materials with
lower thermal expansion coefficient will experience smaller
expansion that keeps contact pressure more uniform.

Thermal conductivity. The thermal conductivity has an opposite
effect on the critical speed as the elastic modulus, which means
that a large thermal conductivity will lead to an increase of the
critical speed. Consequently, increasing the thermal conductivity
helps reduce the non-uniformity of the contact pressure distribu-
tion. This prediction has been confirmed by Anderson's experi-
mental work [13].
3.4. Finite thickness problem

Those predictions made in the previous sections were based on
a semi-infinite plane model while real clutch disks have a finite
thickness. This approximation will fail if the actual thickness of the
disk is small compared with the spatial decay rate of temperature,
namely, when the real part of ma is far less than 1 (RðmaÞ{1).
We assume λ¼ 40ð1=mÞ, h0 ¼ 40 μm, and a¼1 mm, and choose
other parameters shown in Table 1, then substitute those values
into Eqs. (58) and (59), obtaining cn2 ¼−0:6. Consequently, the
migration speed c2 ¼ cn2kλ¼ −2:9� 10−4 m=s. With Eq. (34), when
the growth rate b¼0, we can obtain

ma¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þ −ıλc2

k

r
¼ 0:042þ0:012ı ð63Þ

Since RðmaÞ ¼ 0:042{1, we can conclude our semi-infinite
plane model is acceptable and our predictions are reasonable.
4. Conclusions

A theoretical model is developed to investigate thermoelastic
instability in a frictional system with fluid lubrication that is
simplified as a thermal conductor–insulator frictional system.
A semi-infinite plane model has been testified to be reasonable
for investigating TEI in wet clutches.

Governing equations are established and solved for the thresh-
old of the velocity named the critical speed beyond which TEI
occurs. We can conclude that TEI occurs in wet clutches during the
working process. In addition, the migration speed of hot spots is
typically very slow compared with the sliding speed, but not zero.
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The relation between the critical speed and the fluid film thickness
is non-linear.

A new dimensionless parameter H0 is introduced to help us
predict the critical speed. For a thermal conductor–insulator
system with fluid lubrication, the dimensionless critical speed
Vh0=k is determined by H0, and has a minimum value when H0

equals a preferred value.
The effects of different materials of the conductor (mating disk)

on TEI are also discussed. We can conclude that a material with
low elastic modulus, low thermal expansion coefficient and high
thermal conductivity will experience a high critical speed.
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