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a b s t r a c t

Microelectronic mechanical (MEM) beam resonators with high quality factors are always
preferred in practical applications. As one of the damping sources, thermoelastic damping
(TED) caused by irreversible heat flows is usually considered as an upper limit of the
overall damping effect. A new method is proposed in this work to compensate TED by

an electrostatic field along the beam length with a negative piezoresistive coefficient.
During a resonance, the stretched part of the beam generates a higher electrical power
density and thus a higher temperature, while the compressed region leads to a lower
temperature. Such a temperature distribution is opposite to the temperature change
caused by the thermoelastic effect. The working principle is described by a set of coupled
differential equations, which are subsequently solved by the finite element method. The
result indicates that the TED in the beam resonators can be completely compensated
when the strength of electrical field is tuned to a critical value, namely CEF. The value of
the CEF is further analyzed by a series of parametric studies on various material properties
and geometric factors.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Silicon microelectronic mechanical (MEM) beam resonators are being developed aggressively for a variety of applications
nowadays, such as sensing [1–3], time application and frequency controls [4,5] due to their advantages of high frequency
and high quality factor. The miniaturized scale is also capable of batched fabrication for cost reduction. As one of the most
important design characters, a high mechanical quality factor (i.e. Q-factor or Q-value) or less energy loss in a resonator
means a better precision to operate as a sensor or a frequency filter. Therefore, it is of great importance to understand the
dominating energy loss in the mechanical vibration to identify those factors that impose an upper limit of the Q-value and
those factors that could be eliminated to improve the design. The dominant mechanisms fromwhich the resonator dissipate
energy include air damping, support loss [6,7] and thermoelastic damping (TED) [8–14]. Among them, air damping can be
eliminated by packaging in vacuum because of the small size of the devices. But the support loss and TED can impose an
upper limit on the design of micro resonators with high quality factors.

In vibrations of resonators, the non-equilibrium state of the temperature field is generated by the change of the strain
field. Hence, the irreversible heat conduction between domains with different temperatures leads to the energy dissipation
of TED. Zener [8,9] first studied TED in reeds and wires long time ago. However, the modern application of the theory to
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micro/nanoelectronic mechanical systems should be attributed to Lifshitz and Roukes [10] whose work predicated the
quality factor of TED for micro and nanobeam resonators based on thermal conduction along the height direction.
By applying Green's function, Prabhakar and Srikar [11] analyzed TED by solving the two-dimensional heat transfer equation
to obtain the thermoelastic temperature gradients along both the beam length and height simultaneously. The same
research group [12] also analyzed the frequency shifts due to TED. Wong [13] presented an analytical solution for TED in
a ring gyroscope based on Zener's method. However, these works were restricted to the flexural mode vibrations. Hao [14]
derived the solution of quality factor for disk resonators vibrating in a contour mode by calculating the entropy increase per
cycle of vibration. Sun [15,16] derived the analytical solution for out-of-plane vibrations of circular plate resonators through
the thin plate theory in the cylindrical coordinates. In more complex conditions, TED under residual stresses is investigated
by Zamanian [17] and Vahdat [18] for beam resonators. Kim [19] applied the simplified shell equations and utilized iterative
schemes to analyze TED of nano-mechanical tube resonators with initial stresses. Tunvir [20] studied the nonlinear effect
induced by a large vibration amplitude and found that there are opposite trends of the change in TED under adiabatic and
isothermal surface thermal conditions. Vengallatore [21] and Prabhakar [22] presented an analytical solution to compute the
frequency dependence of TED in bilayered beam resonators. In addition to the analytical methods, the finite element
formulation [23–28] is a more efficient tool to determine the quality factor of TED for those systems with complex
geometries [24–27] and mixed boundary conditions [28].

To enhance the quality factor, Pourkamali and Ayazi [29,30] utilized HARPSS process to decrease the gap between the
MEMS resonator and the electrodes while TED still showed an upper limit to the total energy loss. Candler and Duwel [24]
applied slot cuts in the beam resonator to disrupt the heat flow and then decrease TED based on both experimental work
and numerical analysis, while a more comprehensive numerical study on TED and frequency shift in the beamwith slot cuts
was investigated by Guo et al. [27]. However, either the HARPSS method or adding slot cuts to the beam not only increases
the fabrication cost, but also has a fabrication limit for nanoscale devices. Compared with these methods, utilizing the
piezoresistive effect by applying an electrostatic field on the structure is a more flexible and cost-effective way to
attenuate TED.

The current work is inspired by the research of Steeneken and Phan [31,32] who applied a direct voltage through
a nanoscale silicon beam to generate self-sustained longitudinal vibration. They showed that the damping loss of vibration
was fully compensated by the energy supplied by an electro-thermo-mechanical feedback in the system. In this paper,
a similar energy supply mode by utilizing the piezoresistivity is applied to compensate TED in the flexural mode vibration.
The mechanism is firstly explained by a series of differential equations for the couplings among the electrical, thermal and
mechanical processes. Thereafter a set of finite element equations are derived and the quality factor is computed from an
eigenvalue analysis.

2. Methods

As a key design parameter of resonators, the Q-value is used to describe the energy loss in each cycle of vibration. Less
energy loss is preferred to maintain the vibration with higher amplitude or a sharper peak in the frequency response. The
Q-value is defined as the following ratio:

Q ¼ 2π
W
ΔW

(1)

where W is the maximum vibration energy stored in the system and ΔW is the energy dissipation over one cycle.

2.1. Physical mechanism

The energy loss due to the relaxation of mechanically induced temperature gradients and the resulting irreversible heat
flow is show in Fig. 1. The compression in the beam leads to a higher temperature (hot) regionwhile the tensile stress on the
opposite side of the beam results in a lower temperature (cold) region. We assume that an electrostatic field is applied on
Hot/Compressed

Cold/Stretched

Fig. 1. Temperature contour plot of the clamped–clamped MEMS beam resonator in flexural vibration. The heat flow, illustrated by the arrows, is caused by
the temperature gradient and contributes to TED.
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a clamped–clamped silicon beam resonator. When the system starts to vibrate in a fashion shown in Fig. 1, the resistance R
of the compressed region can be found as

R¼ R0ð1þπlsÞ (2)

where R0 is the resistance without the stress load. πl and s are the piezoresistive coefficient and the mechanical stress,
respectively. The electrical power P generated is defined as

P ¼U2=R (3)

where U is the voltage across the compressed region. When the resonator has a negative piezoresistive coefficient, such as
single crystal silicon after N-type doping, R will increase and P will decrease in those regions subjected to compressive
stresses. Hence, the piezoresistive effect leads to a reduced electrical power and thus a lower temperature in the compressed
region, whereas the temperature in the stretched region increases. Consequently the temperature gradient generated by the
thermoelasic effect shown in Fig. 1 is attenuated by the reverse temperature gradient induced by the piezoresistivity.
The reduced heat low rate results in a less energy loss and a higher quality factor. Briefly, the mechanism is closely related to
the coupling among conductive heat transfer, mechanical vibration and electrical piezoresistive effect.

2.2. Heat transfer

The heat transfer equation involved in TED is known as

ρcp
∂T
∂t

�∇U ðk∇TÞ ¼ PmþPe (4)

where ρ is the density of the material, cp is the specific heat capacity, T is the temperature, k is the thermal conductivity,
Pm and Pe are the heat generation rate per unit volume caused by the thermoelastic deformation and the amplitude of the
electrical power change, respectively. The heat generation Pm comes from thermoelastic heating governed by

Pm ¼ � EαTa

ð1�υÞ
∂ε
∂t

(5)

where E is Young's modulus, α is the coefficient of thermal expansion, Ta is the ambient temperature, υ is Poisson's ratio, and
the dilatation strain tensor ε is defined as

ε¼∇UU¼∇Uðu11þu22þu33Þ (6)

where U is the displacement tensor; u11, u22 and u33 are the strain components in the x-, y- and z-directions, respectively.

2.3. Mechanical vibration

In the theory of vibration, the equation of motion for an elastic solid is obtained from the following force equilibrium:

ρ
∂2U
∂2t2

¼∇Ur (7)

where r is the stress tensor. The stress under mechanical relaxation is defined by Hooke's Law:

r¼ Cε¼ Cðεs�εtÞ ¼ Cðεs�aTÞ (8)

where C is the stiffness tensor, εs is the strain tensor without thermal effect, and εt is the thermal strain tensor.

2.4. Piezoresistive effect on electrical power

The continuity equation for the electrical current J under an electrostatic field Ee can be written as

∇UJ¼∇UseEe ¼ 0 (9)

where se is the electrical conductivity.
The electrical power Pe can be found from

Pe ¼ Ee UJ¼ seE2
e (10)

In the present of piezoresistivity, the electrical conductivity, se, is composed of two terms: the static component denoted
by ‘s’ and the harmonic component induced by the mechanical stress denoted by ‘h’. Eq. (10) is then rewritten as

Peh ¼ ðsesþsehÞE2
e (11)

where the harmonic component in the electrical power, Peh, is defined as

Peh ¼ sehE
2
e (12)
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As indicated in Eq. (9), the electrostatic field Ee is obtained from

∇UsesEe ¼ 0 (13)

The change in the conductivity seh is defined by

seh ¼ πl
r
ses

(14)

where r the mechanical stress aforementioned. The resistance R0 in Eq. (2) is defined as

R0 ¼ ρes
L
A
¼ L

sesA
(15)

where ρes is the static electrical resistivity; L and A are the length and cross-sectional area of conductor, respectively. The
harmonic component of the electrical resistivity ρeh in the matrix form due to the mechanical stress r is defined by the
following equation [33]:

ρeh ¼

ρeh11
ρeh22
ρeh33
ρeh23
ρeh31
ρeh12

2
6666666664

3
7777777775
¼ ρesπijr¼ ρes

π11 π12 π12 0 0 0
π12 π11 π12 0 0 0
π12 π12 π11 0 0 0
0 0 0 π44 0 0
0 0 0 0 π44 0
0 0 0 0 0 π44

2
6666666664

3
7777777775

s11
s22
s33
s23
s31
s12

2
6666666664

3
7777777775

(16)

where πij is the piezoresistive tensor; s11, s22 and s33 are the stress components in the x-, y- and z-directions, respectively.
The electrical conductivity, se, is defined as

se ¼ 1=ðρesþρehÞ (17)

which can be expressed as the following matrix form [31]

re ¼ resþreh ¼ 1
ρes

1 0 0
0 1 0
0 0 1

2
64

3
75� 1

ρ2es

ρeh11 ρeh12 ρeh31
ρeh12 ρeh22 ρeh23
ρeh31 ρeh23 ρeh33

2
64

3
75 (18)

For two-dimensional problems, Eqs. (16) and (18) degenerate to

ρeh ¼
ρeh11
ρeh22
ρeh12

2
64

3
75¼ ρes

π11 π12 0
π12 π11 0
0 0 π44

2
64

3
75

s11
s22
s12

2
64

3
75 (19)

and

re ¼ resþreh ¼
1
ρes

1 0
0 1

� �
� 1

ρ2es

ρeh11 ρeh12
ρeh12 ρeh22

" #
(20)

Therefore,

reh ¼ � 1
ρ2es

ρeh11 ρeh12
ρeh12 ρeh22

" #
(21)

Substituting Eqs. (19)–(21) results in

seh ¼ � 1
ρes

π11s11þπ12s22 π44s12
π44s12 π12s11þπ11s22

" #
(22)

2.5. Finite element formulations

In harmonic vibration, the temperature and displacement have the following forms

T ¼ T0eiωt (23)

U ¼U0eiωt (24)

V ¼ V0eiωt ¼
∂U
∂t

eiωt ¼ iωV0eiωt (25)
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where ω is the angular frequency and generally complex when damping is present; V is the velocity; T0, U0, and V0 are the
amplitudes of temperature, displacement and velocity, respectively.

By applying the interpolating function N (i.e. the shape function) to Eqs. (4)–(6), we obtain the following finite element
equations:

ðKþωHÞTþωFUþPeh ¼ 0 (26)

where K, H and F are the coefficient matrices; T is the nodal temperature; U is the nodal displacement and Peh is the
harmonic electrical power change. The nodal strain is given by

ε¼ BU ¼∇U ðNUÞ (27)

where B is the strain–displacement function in finite element method.
Similarly, Eqs. (7) and (8) are converted into the following form using the same interpolating function,

LU�GTþωMV ¼ 0 (28)

where L, G, and M are the coefficient matrices, and V is the nodal velocity. In addition to Eqs. (26) and (28), one more
equation is needed to solve for the three unknowns U, T and V. The third equation has already been shown in Eq. (25). That is

V ¼ iωU (29)

where the method to compute the coefficient matrices K, H, F, L, G and M has been described in Refs. [25,27].
The vector form of Eq. (12) can be expressed as

Peh ¼ ðrehEeÞ′UEe (30)

where Ee is obtained from Eq. (13) and

Ee ¼
Ee11
Ee22

" #
(31)

Substituting Eqs. (22) and (31) into (30) yields

Peh ¼ Yr¼ � 1
ρes

π11E
2
e11þπ12E

2
e22

π12E
2
e11þπ11E

2
e22

2π44Ee11Ee22

2
664

3
775

�1
s11
s22
s12

2
64

3
75 (32)

Meanwhile substituting Eqs. (8) and (27) into (32) leads to

Peh ¼ Yr¼ YCε¼ YCBU (33)

In an elemental domain,

Peh ¼ SU (34)

where

S¼∬NTYCB dxdy (35)

2.6. Eigenvalue equations

Combining Eqs. (26), (28), (29) and (34) yields,

�K S 0
G �L 0
0 0 I

2
64

3
75

T

U

V

2
64

3
75¼ iω

H F 0
0 0 M
0 I 0

2
64

3
75

T

U

V

2
64

3
75 (36)

where I is an identity matrix. This is a standard eigenvalue equation. The eigenvalue of the equation is the angular frequency ω
(i.e. the eigenfrequency) whose corresponding eigenmode is denoted by the eigenvectors U, V, and T. When the electrical field
is absent, S equals zero and Eq. (36) degenerates to the situation involving TED alone, which was already studied in Refs.
[25,27]. By formulating the velocity field to be independent of the displacement, the originally quadratic Eq. (7) is reduced to
two first-order equations, i.e. Eqs. (28) and (29).

The quality factor of the system can be evaluated from

Q ¼ 1
2

ReðωÞ
ImðωÞ

����
���� (37)

where Re(ω) is the real part of ω giving the angular frequency in the presence of both thermoelasticity and piezoresisitivity;
Im(ω) is the imaginary part of ω representing the attenuation of vibration. The finite element algorithm is developed in the
form of a customized MATLAB code.
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3. Results and discussions

3.1. Power change by piezoresistive effect

As discussed in the former section, TED can be compensated by the reduced temperature difference due to the change in
the electrical power generation. Such a power change can be computed by Eq. (34) as a function of the displacement.
A schematic of the electrical connection for providing the electrical field is shown in Fig. 2(a). To illustrate the temperature
distribution by the piezoresistive effect, the power change in the silicon beam is computed when the driving force ‘F’ is
assumed constant. The result is shown in Fig. 2(b). The micro beam in the numerical analysis is assumed as single crystal
silicon with length 200 μm, height 10 μm and thickness 20 μm. The voltage Ve applied across the silicon beam is 2 V. The
center of the beam is exerted by a concentrated force F¼2�10�10 (N), and both ends of the beam are clamped. The
properties of the single crystal silicon after N-type doping (with a negative piezoresistive coefficient) are listed in Table 1.
The analysis is performed in the two-dimensional plane strain condition. To minimize the computational effort, the model is
simplified into a half beam by taking advantage of its geometric symmetry, as shown in Fig. 2(b).
V ee

F

+ -

Height (H)

Length (L)y

x

F/2

h ( / 2)Power change (W/m2)

Fig. 2. (a) Schematic of the beam resonator under a central driving force with a static electrical field. (b) The simplified structure (half beam) with the
distribution of the nodal power (W/m2) under a constant central driving force.

Table 1
Material properties of single crystal silicon after N-type doping.

Young's modulus (Pa) 1.57�1011

Poisson's ratio 0.22
Thermal expansion coefficient (K�1) 2.6�10�6

Thermal conductivity (Wm�1K�1) 90
Specific heat (J kg�1 K�1) 700
Density (kg m�3) 2330
Ambient temperature (K) 300
Piezoresistivity, π11/π12/π44 (Pa�1) �102.2/53.4/�13.6�1011

Static electrical resistivity (Ω m) 1�10�4
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The nodal strength of the electrical field was computed from either the finite element analysis for a complex geometry,
or the equations Ee11¼Ve/L and Ee22¼0 for a straight beam with uniform cross-section. It was followed by a stress-strain
analysis for the nodal values of the displacements, stresses and strains. The result was then used to find the electrical power
change directly from Eq. (34) or a combination of Eqs. (19), (21) and (30). It turns out that both the direct and the sequential
methods lead to the same result, which can be considered as a validation of Eq. (34) despite the fact that the piezoresistive
effect is anisotropic. The change in the nodal power is shown in Fig. 2(b) based on the 9-node quadrilateral (Q9) elements
with 51 nodes along the length and 13 nodes along the height. It has been found that the distribution of power change leads
to a reversed temperature gradient in comparison with that shown in Fig. 1.

Additionally the relationship between the results and the mesh density was studied by employing the 4-node
linear quadrilateral (Q4) elements and Q9 elements with various node numbers. The results of the transversal displacement
and the power change at the node where the force is exerted are shown in Fig. 3. The horizontal axis of Fig. 3 represents
the number of nodes along the length of the half beam, while the number of nodes along the height is 5, 9 and 13.
The result shows that the Q9 elements converge faster than the Q4 elements even when a coarse mesh is used with
only 5 nodes (i.e. two Q9 elements) along the height and 21 nodes (i.e. ten Q9 elements) along the length. In addition,
Fig. 3 shows that the results using 9 or 13 nodes along the height are quite close to each other, for both Q4 and Q9
element types.
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3.2. Convergence studies

The convergence studies on the quality factor along with Re(ω) and Im(ω) were also performed by using both Q4 and Q9
elements. When the electrical field is absent (i.e. Ve¼0), the system degenerates to a standard TED problem and a number of
analytical methods exist in the literature. In order to compare the numerical results of TED with the analytical results
reported in Ref. [10], we set Poisson's ratio to zero. The geometry and material properties of the silicon beam remain the
Table 2
Results from the convergence studies.

Ve Result 9�41 mesh 13�101 mesh Error (%)n

0V Q 14,723.65 14,721.06 0.0176
Im(ω) 444.156 444.215 �0.0133
Re(ω) 13,079,200 13,078,640 0.00428

2V Q 250,470.9 250,866.6 �0.158
Im(ω) 26.10957 26.06727 0.162
Re(ω) 13,079,380 13,078,810 0.00436

n The error is estimated by comparing the result of 9�41 with that of 13�101.
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same as those used in the previous section. The analysis was performed under the following two conditions: the applied
voltage, Ve, was set to (i) 0 V (standard TED) and (ii) 2 V through the beam (i.e. 1 V through the half beam).

The analytical solution [10] of the quality factor for the standard TED problem is 14,646.7 while the numerical analysis yields
14,721.1 by the Q9 elements with a 13�101 finite element mesh (13 nodes along the height and 101 nodes along the length).
The error in the numerical result is approximately 0.508 percent compared to the analytical solution. The results of the quality
factor along with both Re(ω) and Im(ω) are also shown in Fig. 4 where the applied voltage is set to 2 V. Similar to the convergence
test of the power change discussed previously, the Q9 elements show a faster speed of convergence than the Q4 elements. The
results using 9 nodes and 13 nodes along the height are noticeably close to each other when Q9 elements are used. To balance
the effort of computation and accuracy, the results based on Q9 elements with two different mesh densities have been compared
in Table 2. The numerical error shows that the accuracy based on the 9�41 mesh is more favorable in the current study. The
analyses involved in the following sections are therefore based on this mesh density alone.

3.3. Parametric studies

3.3.1. Strength of electrostatic field
The quality factors of the beam resonator under different strengths of the electrical field, Ees11 (Ees22 is always zero in the

present study), are obtained and shown in Fig. 5(a). The geometric parameters and material properties remain the same.
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Fig. 6. (a) Im(ω) as a function of the strength of the electrical field and (b) the value of CEF as a function of Poisson's ratio.
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A sharp peak is seen in Fig. 5(a) when the electrical field has a strength of 2.3�104 V/m. To explain the reason for this peak,
the angular frequency of vibration, Re(ω), accompanied by the attenuation, Im(ω), are also presented in Fig. 5(b). It shows
that the peak of the quality factor in Fig. 5(a) is caused by the value of Im(ω), which is approaching zero. In addition, Im(ω)
decreases with the strength of the electrical field applied on the system. This trend confirms that the electrical field can
indeed reduce the energy loss caused by TED.

The regression analysis shows that there exists a strong correlation between Im(ω) and the electrical field since the
coefficient of determination is equal to 1. Hence, an interpolating function can be obtained from curve fitting based on
a limited number of data points. Furthermore, the fitted function shows that Im(ω) equals zero when the electrical field has
a strength of 2.2972�104 V/m. According to Eq. (37), in that situation the quality factor approaches infinity and TED is
completely compensated by the piezoresistive effect. In the current work we define the strength of the electrical field at zero
Im(ω) to be the critical value of the electrical field (CEF). The corresponding applied voltage is denoted as VCEF. The VCEF is
obviously the counterpart of the threshold voltage mentioned in Refs. [31,32]. The values of CEF and VCEF are dependent on
the beam geometry and material properties.

When the strength of the electrical filed is greater than CEF, Im(ω) will have a negative value. It implies that the change in
the electrical power acts as a driving force for the kinetic energy in vibration. By introducing piezoresistivity, the energy loss
due to TED can be compensated, leading to a higher quality factor in resonance. Theoretically, the amplitude of vibration
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would increase indefinitely, leading to material failure if the system had a sufficiently high input energy. However, in reality
the increased vibration amplitude with sufficiently high quality factor will trigger the nonlinear dynamic status of the
system [34,35]. The change in the angular frequency Re(ω) as a function of the strength of the electrical field is also shown
in Fig. 5(b). Contrary to the result of Im(ω), Re(ω) rises as the electrical field increases its strength. However, the change in
Re(ω) is merely 0.001 percent given the present range of the electrical field, which is negligible compared to the change
in Im(ω).

3.3.2. Material properties
The parametric study in the following sections is focused on the value of CEF when TED is entirely compensated by the

piezoresistive effect. The CEF is estimated from the curving fitting on the results of Im(ω) under the different electrical field
strengths. Fig. 6(a) indicates the change in the quality factor as a function of the electrical field strength through the beam
for different values of Poisson's ratio. The estimated CEF from curve fitting is shown in Fig. 6(b) as a function of Poisson's
ratio. The change is almost linear and the rate is approximately 1.14�103 V/m. On the other hand, Fig. 7 shows the effect of
Young's modulus when Poisson's ratio is set to 0.22 as denoted in Table 1. Quite different from the effect of Poisson's ratio,
when Young's modulus varies, the values of CEF do not differ significantly as seen in Fig. 7(a). However, a more extensive
investigation (shown in Fig. 7(b)) has revealed that the change rate of the CEF remains as a linear function of Young's
modulus. Nevertheless, such a change rate is only 0.5 V/m/GPa and apparently negligible.

3.3.3. Beam aspect ratio
The studies on the geometric effects are shown in Figs. 8–10. Fig. 8(a) shows the quality factor as a function of the

electrical field with different beam lengths while the height, H, is maintained as 10 μm. Fig. 8(b) shows the CEF decreases
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nonlinearly with the beam length. However, as the length increases by 167 percent from 120 μm to 320 μm, the decrease in
the CEF is merely 4.08percent. The VCEF can also be found in Fig. 8(b). Interestingly VCEF increases linearly with the beam
length and the rate of the change is approximately 0.022 V/μm. On the other hand, Fig. 9(a) shows the quality factor as a
function of the electrical field strength with different heights while the length is maintained as 200 μm. In Fig. 9(b), the CEF
is shown as a nonlinear function of the beam height. However, the effect of the beam height on CEF is more significant than
the beam length. The CEF decreases by 60.5 percent when the height increases by 166.7 percent from 6 μm to 16 μm. In
addition, the VCEF changes in the same trend since the length is maintained constant.

To further study the change in CEF as a function of the beam aspect ratio, Ar¼L/H, the results in Figs. 8 and 9(b) are reordered
and presented in Fig. 10(a). Apparently the CEF changes in opposite directions as the aspect ratio is altered by the length and the
height, respectively: The CEF declines nonlinearly with the aspect ratio when the length is changed, meanwhile it increases
linearly with the beam aspect ratio when the height is changed and the corresponding rate is approximately 1100 V/m.

Since TED is compensated by the kinetic energy transferred from the input electrical power, there must exist a correlation
between the input electrical power, P, and the aspect ratio, Ar. We define the cross-sectional area of the beam as A, and A¼Hδ
where δ is the beam thickness. Substituting Eqs. (15) into (3), we obtain the input electrical power PCEF as

PCEF ¼
V2
CEF

R0
¼ V2

CEFA
ρesL

¼ V2
CEFHδ
ρesL

¼ V2
CEFδ

ρesAr
(38)
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The result is presented in Fig. 10(b) and apparently PCEF is a linear function of the beam aspect ratio alone. It indicates that
more electrical input power is required to compensate TED when the beam resonator has a greater aspect ratio and the
corresponding rate is approximately 0.009W per unit aspect ratio of beam when the thickness is set to δ¼20 μm.

In addition, for a beam resonator with the same material property and thickness, VCEF is a linear function of the beam
aspect ratio alone, as seen in both Eq. (38) and Fig. 10(b). In fact, the slope of the linear regression of the data in Fig. 10(c)
indicates that the corresponding rate is approximately 0.22 V per unit aspect ratio of the beam.
3.3.4. Scaling effect
We also investigated the CEF on different size scales toward miniaturization of the beam resonators. Fig. 11(a) shows the

result of CEF when the scaling factor of the resonator beam 200 μm�10 μm changes progressively from �10,000 (length
2 m, height 0.1 m) to �1�10�5 (length 2 nm, height 0.1 nm) in a log–log diagram. However, the VCEF has a different trend
as shown in Fig. 11(b) since the length here changes differently from the scaling factor. Two distinct plateaus can be seen in
Fig.11(b). The first plateau shows the VCEF when the scaling factor is higher than �100 (length 20 mm, height 1 mm) while
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the second plateau emerges when the scaling factor is lower than �1 (length 200 μm, height 10 μm). Moreover, the change
in the VCEF from the higher plateau to the lower plateau is only about 10 percent from 5.12 V to 4.60 V, meanwhile the size
changes dramatically from the meter scale to the nanometer scale.
4. Conclusions

The current work presents a method to enhance the quality factor of MEMS beam resonators vibrating in their flexural
modes by applying an electrostatic field on the system with a negative piezoresistive coefficient. During the vibration, the
temperature distribution caused by the electrical power change can attenuate the thermoelastic temperature difference that
leads to the conductive heat flow from TED. To predict the thermomechanical responses of the system in the presence of
piezoresistivity, a set of coupled differential equations for the relevant thermal, mechanical and electrical processes are
constructed. These equations are then solved by the Galerkin finite element method. The quality factor is evaluated by an
eigenvalue analysis.

A series of convergence studies have been performed using both linear and nonlinear interpolating functions in the finite
element method for achieving better accuracy and less computational effort. The quality factor is computed as a function of
the strength of the electrical field. The result demonstrates that the quality factor increases with the electrical field strength.
Further analysis reveals that an infinite quality factor is possible when the attenuation of vibration, Im(ω), equals zero,
i.e. TED is completely suppressed. The study also shows that the relationship between the attenuation in the energy loss and
the electrical field strength can be presented by a mathematical function from curve fitting. Such a function is also
implemented to estimate the value of CEF.

In addition, other parametric studies have indicated the impacts of a variety of material properties and geometric
parameters on the CEF and VCEF. For example, the CEF increases linearly with Poisson's ratio whereas Young's modulus has a
negligible effect. It has also been found that PCEF and VCEF are functions of the beam aspect ratio alone. On the other hand,
the CEF changes linearly with the scaling factor of the miniature model in a log–log diagram, meanwhile there exist two
distinct plateaus of CEF in the plot as a function of VCEF.
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