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A finite element model is developed for the frictionally excited thermoelastic instability
problem in intermittent sliding contact with finite geometries and realistic friction
materials. The existing analytical solutions are used to validate the method in several
limiting cases. It is concluded that some caution must be taken for the commonly used
strategy of assuming time-averaged frictional heat generation for intermittent contact.
The predictions made by the half-plane analytical solution that assumes thermally
nonconductive and rigid frictional surface considerably overestimate the dimensionless
critical speeds of realistic brake or clutch systems. Longer wavelength perturbations
become unstable at a dimensionless sliding speed approaching zero, as opposed to the
converged value of unity in the half-plane solution. Averaging the heat input over the
entire circumference is appropriate only when the period of frictional contact is longer
than that of separation. These results merit the use of the finite element method in
more general applications involving intermittent contact.
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INTRODUCTION

Thermoelastic instability (TEI) theory states that in frictional sliding systems
such as disk brakes or clutches, the thermal-mechanical feedback can be unstable
if the sliding speed exceeds a certain threshold [1]. The theoretical models were
developed over the past decades to investigate the phenomenon, both analytically
[2] and numerically [3], using either the eigenvalue formulation [4] or transient
simulation [5], the former of which assume a perturbation of the solution in
the exponentially growing form, and an eigenvalue equation is constructed from the
governing differential equations. The growth rates of the variables, and further the
critical sliding velocity, can then be recovered from the eigenvalues of the equation.

The majority of these works assume coextensive contact, especially for clutch
systems, due to the fact that they have annular geometries, moving continuously
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FINITE ELEMENT ANALYSIS OF THERMOELASTICS 871

in the circumferential direction. Many other sliding surfaces, such as those in disk
brake systems, are not coextensive as the brake pads do not cover the entire
rotor surface, and the material points on a surface always experience alternating
periods of contact and separation. For axisymmetric plates in clutches, intermittent
processes are also possible, e.g., in the presence of initially uneven surfaces as a
result of surface separation, manufacturing imperfection, or misalignment of the
axles during mounting.

These intermittent processes can be expected to alter the stability boundaries
of the TEI problem. Barber et al. [6] suggested us to allow for the intermittent
contact in TEI by averaging the heat input over the circumference. This strategy was
later reiterated by some other researchers, such as Hartsock and Fash [7]. However,
the hypothesis was not verified until Ayala et al. [8], who explored a simplified
intermittent contact problem in which an infinite, conductive material slides against
a rigid nonconductive surface. Their results show that at a low Fourier number, i.e.
when the thermal transient is much longer than the period of one revolution, the
method by averaging the frictional heat input over the circumference works fairly
well, and the critical speed is an inverse linear function of the proportion of time
in sliding contact. However, at higher Fourier numbers the critical speed becomes
lower, although the dependence of the critical speed on the Fourier number becomes
relatively weak.

These conclusions, however, were based on the assumption that the friction
material is rigid and nonconductive, and that the other material has an infinite
extension. Realistic geometries do not satisfy these idealized conditions. Prior
researches on continuous contact revealed considerable differences between the half-
plane solutions and the models with finite dimensions and real materials [9, 10].
It is not clear at this point whether the same conclusions obtained from the
idealized half-plane solutions equally work for more realistic systems involving finite
geometries with both materials being deformable and conductive.

The analytical approaches have proved difficult in handling this type of
problems due to the demand for numerical convergence and iterations, which are
sometimes computationally prohibitive. The finite element method developed by Yi
et al. [11] is therefore a preferable tool, and the present work is devoted to solving
the intermittent contact problem using the same strategy. It should be pointed out
that some preliminary discussions on this issue can be found in the literature [12];
however, a systematic exploration of the problem including the method validation
has never been attempted.

FINITE ELEMENT MODELS

General Formulation

We assume a two-dimensional configuration to approximate a brake or clutch.
The circumference of a brake or clutch disk is spread out along the sliding direction,
and the effect of the radial thickness is ignored in our model. The solution method
follows the standard procedure for the problems in this category [11]. Briefly one
can start from the governing equations of heat conduction, thermoelasticity and
frictional heat generation. It is followed by a search for the constant speed solution

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
D

en
ve

r 
- 

M
ai

n 
L

ib
ra

ry
] 

at
 0

8:
22

 2
3 

M
ay

 2
01

4 



872 Y.-B. YI ET AL.

in linear perturbations that grow exponentially in time. For the temperature field,
the perturbation solution can be written as

T�x� y� t� = T0�x� y�+��ebtT1�x� y�� (1)

where T0 is the steady-state solution, b is a complex exponential growth rate. �
represents the real part of a complex number. The amplitude of oscillation T1 is
typically complex to reflect the change in the phase angle of temperature across the
thickness. Similar assumptions in the perturbation form can be made on other key
variables including the displacement and the contact pressure. A direct result from
the perturbation assumption is that time is eliminated from the governing equations,
leading to a generalized eigenvalue equation in the following matrix form after an
implementation of the finite element method:

M� = bH� (2)

where � is the nodal temperature vector; M and H are the coefficient matrices
determined from the material properties and the finite element shape functions.

Given appropriate boundary conditions the critical speed can be determined
from the sliding speed at which the real part of the growth rate is zero. Notice that
in the above formulation, the wave number (i.e., the number of higher temperature
regions in the sliding direction) is not a predefined parameter. Rather, it is a result
obtained from the computed eigenfunctions. Therefore the method can be used to
solve problems for both continuous and intermittent contacts. The details on the
matrix derivations are omitted here, as they are modified versions of those used in
the finite element scheme previously developed by the Yi et al. [11]. In intermittent
contact the critical speed is presented as a function of the Fourier number, which is
defined by

Fo = km2t0 (3)

where

m = n

r
� t0 =

L

V
(4)

Here, n is the total number of waves in the circumference; r is the radius of the
rotating disk, L is the circumferential length; V is the sliding velocity.

Two-Dimensional (2-D) Finite Element Model

In the 2-D finite element model, the mesh is generated uniformly in the
sliding direction, but biased towards the contact surfaces in both materials. The
implementation of the quadratic element type more accurately approximates the
nonlinear distributions of temperature in both thickness and longitudinal directions,
and it can thus improve the numerical efficiency. The total length of the model in the
y-direction is set to the circumferential length of the disk. In a continuous contact
situation, both layers in contact are coextensive with the same length, whereas in an
intermittent contact the friction layer has a reduced length (see Figure 1).
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FINITE ELEMENT ANALYSIS OF THERMOELASTICS 873

Figure 1 Schematic of the intermittent contact model: (a) a conductive half plane sliding against a
rigid nonconductor, and (b) a conductive plate of finite thickness sliding against a deformable and
conductive surface.

The frame of reference is fixed to the friction layer to ensure that the problem
has a fixed boundary as opposed to a moving one, which is mathematically more
difficult to handle. A cyclic boundary condition, i.e., all the quantities on one end
are assumed to be the same as those on the other end, is applied to the conductive
layer in the direction of sliding to model the closed disk ring configuration. Notice
that there are no constraints applied on the ends of the friction pad in the direction
of sliding. To simplify the model, the symmetric-antisymmetric boundary conditions
are assumed across the thickness (see Figure 1), with the symmetric condition
specified on the poor conductor (i.e., the friction material) and the antisymmetric
condition on the good conductor (i.e., the metal plate), due to the fact that this
mode pattern has been found dominant in many practical applications. Particularly,
on the symmetric boundary

qx = 0� ux = 0� �xy = 0 (5)

and on the antisymmetric boundary,

T = 0� uy = 0� �xx = 0 (6)

where u, q, and � represent the displacement, heat flux and stress, respectively.
It should be reiterated that the wave number is not predesignated in the two-
dimensional model, nor a monotonic function of the sliding speed. Therefore
iterations are required to determine the critical speeds and the associated wave
numbers. More specifically the critical speed is sought on the basis of the following
procedure:

1. The analysis is performed at a number of different sliding speeds with a
prescribed interval, and the growth rates of temperature at each sliding speed are
computed.

2. The wave number associated with each growth rate b is determined by the Fast
Fourier Transform (FFT) technique. This is not a trivial part of the work since

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
D

en
ve

r 
- 

M
ai

n 
L

ib
ra

ry
] 

at
 0

8:
22

 2
3 

M
ay

 2
01

4 



874 Y.-B. YI ET AL.

the sinusoidal profiles of the eigenfunctions in continuous contact become highly
distorted when intermittent contact is involved.

3. The growth rates of temperature for each wave number at the different sliding
speeds are sorted following the above two steps. Three successive sliding speeds
with positive growth rates are then identified.

4. The value of the sliding speed at zero growth rate, i.e., the critical speed for each
wave number, is extrapolated by quadratic curve fitting on the basis of the three
different pairs of growth rate and sliding speed.

Fourier Model for Continuous Contact

The one-dimensional Fourier finite element model serves for the validation
and convergence study of the continuous contact solution. It is constructed in a
way similar to the one used in Yi [13]. The model is discretized in the thickness
only and each node has two degrees of freedom along the x- and y-directions.
The wave number appears in both stiffness and thermal matrices in the finite
element equations. The cyclic boundary conditions and coextensive contact are the
intrinsic features of the model. Therefore the computational effort is minimized in
the Fourier model as the finite element discretization is not needed in the direction
of sliding.

Nonconductive Rigid Friction Plate

To consider the extreme situation where a conductive half plane slides against
a rigid nonconductive surface in the finite element models, a sufficiently large
thickness equal to the circumferential length of the disk is assumed in the conductive
material so that the boundary effects are minimized. Meanwhile the elastic modulus
of the insulating material is set to a value five orders of magnitude higher than that
of the conductive material, and a single element is used across the thickness of the
insulator. Other parameters remain unchanged.

ANALYTICAL MODELS FOR COMPARISON

Continuous Contact

Burton et al. [14] showed that for plane strain, the critical speed of
a conductive surface sliding against a rigid nonconductive surface is linearly
proportional to the wave number according to

Vc =
2Km�1− 	�

E
f
(7)

where K is the thermal conductivity; m is the wavenumber per 2� of length; E, 
,
	, f are Young’s modulus, the coefficient of thermal expansion, Poisson’s ratio and
the coefficient of Coulomb friction, respectively.
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FINITE ELEMENT ANALYSIS OF THERMOELASTICS 875

Intermittent Contact

For a conductive half plane sliding against a rigid nonconductive surface we
define the following dimensionless velocities following Ayala’s notations [8]:

V ∗ = V

km
(8)

where V is the critical sliding velocity in the intermittent contact, and

V0 =
Vc

km
(9)

We further define a dimensionless speed V̂ by taking the ratio of V ∗ to V0.

V̂ = V ∗

V0

= V

Vc

(10)

It was shown [8] that at sufficiently small Fo � 1,

V̂ → 1
R1

(11)

Namely, the critical speed is the same as that of a system in continuous contact with
the heat generation rate replaced by the average rate during the intermittent process.
Detailed numerical studies show that the critical speed differs from that predicted
from Eq. (11) by less than 1% for Fo < 0�1.

As Fo → �, it is found that

V̂ → 1+√
R1

2R1

(12)

where R1 is t1/t0, i.e., the ratio of the contact period to the overall time. For large
but finite Fourier numbers, one has to solve a nonlinear equation in the following
form for b∗, the dimensionless growth rate:

e�b
∗R1−R2�Fo ×

[√
1+ b∗eR2Foerfc

(√
R2Fo

)
− e�1+b∗�R2Foerfc

(√
R2Fo�1+ b∗�

)]
= b∗

1+√
1+ b∗

(13)

from which V̂ can be computed from

b∗ = 1
2

[
4V̂ − 1−

√
8V̂ + 1

]
(14)

Notice that “erfc” in Eq. (13) is the complementary error function. Equations (11)
through (14) are adapted from Ayala’s solutions [8].
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876 Y.-B. YI ET AL.

RESULTS

A Conductive Half Plane Sliding Against a Rigid Nonconductive
Surface

Continuous contact. This is a limiting case of intermittent contact with the
contact ratio R1 = 1. In continuous contact it is expected that the one-dimensional
Fourier finite element model yields the same result as Burton’s solution. In Figure 2
clearly V̂ of the Fourier model remains at 1.0 for the entire range of Fo. The
Fourier number covered in the range corresponds to the wave number n = 1−20, or
m = 6�25−125 when the disk radius r is set to 0.16 m. A convergence study for the
two-dimensional finite element model is also shown in the same figure. It converges
to unity at lower Fo but deviates from unity at larger Fo. We found that 24 elements
in the circumference result in a maximum numerical error of approximately 20%.

In fact, when n = 20, each wave is covered by only one element, hence
inadequate to delineate the profile of the eigenfunction at larger wave numbers.
On the other hand, when the element number increases to 40 or 60, a much better
accuracy is obtained. For example, with the total element number of 60, the maximum
numerical error obtained is less than 1%. We conclude that the two-dimensional finite
element model for continuous contact must be discretized in such a way that each
wave is covered by at least two or three elements in order to achieve a desirable
accuracy in the solution. In the preceding results, 12 biased elements with a bias ratio
of 2.0 in the thickness direction of the conductive material have been found sufficient
to capture the rapid change in the temperature gradient in the thickness.

Intermittent contact. The plane finite element model was also compared to
Ayala’s solution when the contact is intermittent. We did not reproduce the entire
analytical solution; however, the results in the three limiting cases represented by
Eqs. (11), (12), and (14) are believed to be sufficient for the purpose of comparison
and validation. In the finite element model for intermittent contact, the metal layer

Figure 2 Convergence study of the finite element models for continuous contact, assuming a conductive
half plane sliding against a rigid nonconductor.
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FINITE ELEMENT ANALYSIS OF THERMOELASTICS 877

Figure 3 Finite element (FE) solutions for three different contact ratios (a) R1 = 1/2, (b) R1 = 1/3,
and (c) R1 = 1/6. A conductive half plane sliding against a rigid nonconductor is assumed.

has been divided into as many as 90 elements in the direction of sliding, so that
the contact region is covered by sufficient elements. The thickness is divided into
12 elements. Figures 3(a), (b), and (c) show the finite element solutions for three
different contact ratios 1/2, 1/3, and 1/6, respectively.

Clearly, in all three scenarios, the results are bounded between the analytical
solutions given by Eq. (11) and Eq. (12). To the right side of the figures when Fo

increases, the curves gradually approach the asymptotic solutions for Fo = �. When
R1 is reduced, the figures show a reduced range of Fo, e.g., the maximum Fo is 2.8
when R1 = 1/6 as opposed to 8.2 when R1 = 1/2. This is because the raised critical
sliding speed as a result of the reduced R1 leads to a reduction in the total period
of sliding process, and thus a decreased Fourier number.

The maximum Fourier numbers shown in Figure 3 correspond to a total wave
number n of approximately 20 along the entire length of the conducting layer.
Assuming 90 quadratic elements along the length, there are only about four elements
for each wave. A Fourier number beyond the reported maximum value would lead
to insufficient elements covered by each wave, especially at the locations where the
transition between separation and contact takes place. It is believed that the range
of the Fourier number in Figure 3 is adequate to show the trend of the critical speed
as a function of Fo. The zigzag patterns in the curves reflect the numerical errors
from the finite element analysis. These errors are actually quite small in view of the
scale used for the vertical axes in the figures.
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878 Y.-B. YI ET AL.

Two Conductive Plates with Finite Thickness

Continuous contact. For the continuous contact problem of two conductive,
deformable plates with finite thickness, we compared the computational results
between the two finite element models: (A) the full two-dimensional finite element
model with both thickness and length directions discretized, and (B) the one-
dimensional Fourier model defined in the thickness direction only. The parameters
used in the finite element analysis are shown in Table 1. The element numbers used
in the length and thickness of model A are 50 and 20, respectively. Notice that both
materials are conductive now and hence both need to be divided into biased elements
through the thickness. We define the dimensionless velocity in the following way:

Ṽ = V

Vf

(15)

where V and Vf are the critical speeds determined by model A and B, respectively.
During the calculation of Vf in the continuous contact model, the time-averaged
frictional heat input (i.e., the coefficient of friction divided by R1) is already taken
into consideration. The dimensionless wave number here is defined as

A = ma (16)

following Lee and Barber’s notation [15].
The reason to change the definition of the dimensionless wave number is that

the Fourier number Fo defined previously is no longer a monotonic function of the
wave number m when the disk has a finite thickness. Figures 4(a) and (b) show the
dimensionless critical speed based on Lee’s notation and the definition in Eq. (15),
respectively. It can be seen from Figure 4(b) that the full 2-D model agrees quite well
with the Fourier model, with a maximum numerical error around 5%. The contour
plots in Figure 5 display the temperature distribution with an exaggerated thickness.
There is a noticeable change in the phase angle across the thermal skin layer of
the poor conductor. This observation is consistent with the prior research on the
subject.

Intermittent contact. Now we turn our attention to the realistic situation in
which both surfaces in intermittent contact are deformable and conductive. Figure 6

Table 1 Parameters used in the intermittent contact model with both surfaces conductive and
deformable

Metal (cast iron) Friction material

Young’s modulus, E (GPa) 112.4 2.03
Poisson’s ratio, 	 0.25 0.35
Coefficient of thermal expansion, 
 �K−1� 1�325× 10−5 3�0× 10−5

Thermal conductivity, K (W m−1 K−1) 57 0.93
Thermal diffusivity, k (mm2 s−1) 17.2 0.522
Thickness (mm) 14 10
Coefficient of friction 0.4 0.4
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FINITE ELEMENT ANALYSIS OF THERMOELASTICS 879

Figure 4 Dimensionless critical speed based on (a) Lee and Barber’s definition [15] and (b) the
definition given in Eq. (15). A conductive half plane sliding against a rigid nonconductor is assumed.

Figure 5 Temperature eigenfunction in continuous contact with the thickness exaggerated: (a) the
entire model; (b) an enlarged local region on the sliding interface.

Figure 6 A biased finite element mesh generated for the model with R1 = 1/3. Both sliding surfaces
are conductive and deformable. The thicknesses of both layers are exaggerated.
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880 Y.-B. YI ET AL.

shows an example of the finite element mesh used in the computation for R1 = 1/3.
The model consists of 48 elements in the sliding direction and 24 elements through
the thickness. For smaller values of R1 such as 1/6, an element number up to 60
is used in the direction of sliding to ensure that the contact region is covered by
sufficient elements. The computation is performed iteratively at 20 different sliding
speeds with a uniform spacing to search for the critical values of the speed.

Figures 7(a) and (b) are the results for the intermittent contact model with both
materials being conductive and deformable. Figure 7(b) indicates that the continuous
contact model with the time-averaged frictional heating always overestimates the
critical speed, which is consistent with the conclusion from the prior analytical studies.
However, Figure 7 reveals several new features that are quite different from the
half-plane solution. First of all, the dimensionless speed Ṽ is no longer a monotonic

Figure 7 Critical speed in intermittent contact as a function of the wave number, where 
 is the
reciprocal of the contact ratio, or 1/R1. Vf is the critical speed in the continuous contact model, with
the time-averaged frictional heat input considered.
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FINITE ELEMENT ANALYSIS OF THERMOELASTICS 881

function of the wave number. At smaller wave numbers the result is approaching zero
rather than converging to Ayala’s solution (Ṽ = V̂R1 = 1).

There exists a peak value on the curve (it is actually corresponding to the
lowest value of the dimensional critical speed) where the two solutions are the
closest. Particularly, when R1 < 1/2, i.e., the period of contact is longer than the
period of separation, applying the time-averaged heat input in the continuous
contact model yields an error less than 10%. When R1 = 1/3, the error becomes
approximately 20%. The error is even more significant when the contact ratio is
reduced further. The location of ma at the peak value is dependent on R1 and it
shifts slightly to the left when R1 is reduced. Moreover, at larger wave numbers, the
critical speed does not converge to Ayala’s solution, either. This can be seen from a
comparison between the results shown on the right side of Figure 7(b) and Eq. (12)
that indicates

Ṽ = V̂R1 →
�1+√

R1�

2
(17)

For instance, when R1 = 1/2, the finite element model gives Ṽ = 0�5V, which
is much lower than Ayala’s solution around 0.85. It is found that for a smaller value
of R1, the deviation of the result from Ayala’s solution is even more pronounced. In
fact, Ayala’s solution always overestimates the critical speed, which is not surprising
because of the significant difference in the fundamental assumptions related to the
geometrical configurations and materials involved in the two models.

The eigenfunction of temperature shown in Figure 8(b) exhibits two distinct
zones where the amplitude of oscillation either rises or decays, corresponding to
the contact zone and the separation zone, respectively. Thermally, these periods
are associated with the periods of frictional heating that alternate with the
periods of conductive cooling. In steady state when the growth rate is zero, the

Figure 8 Representative eigenfunctions of temperature in (a) continuous contact and (b) intermittent
contact with R1 = 1/3.
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882 Y.-B. YI ET AL.

Figure 9 Eigenfunctions of temperature for intermittent contact with the contact ratio (a) R1 = 1/3 and
(b) R1 = 1/6, presented in the form of contour plots. The thicknesses of both layers are exaggerated.

increased temperature variation due to frictional heating during the contact period
is counteracted by the reduced amplitude in the separation period.

In contrast, the continuous contact model exhibits no such variations in the
amplitude as seen in Figure 8(a). The temperature distribution is also presented
in the contour plots in Figure 9 where the contact ratios are R1 = 1/3 in (a)
and R1 = 1/6 in (b). It is seen that the otherwise homogeneous distribution of
temperature along the contact interface becomes disturbed. A closer inspection on
the eigenfunctions reveals that the temperature distribution is severely distorted near
the contact/separation points where the stress concentrations are located.

CONCLUSIONS

The finite element scheme based on the eigenvalue method is implemented for
the analysis of thermoelastic instability in intermittent sliding contact with practical
model parameters. A numerical algorithm is developed to determine the critical
velocities by tracking the eigenmode patterns and the corresponding growth rates.
The method has been validated by both analytical and numerical solutions in some
limiting situations. It is concluded that when the realistic materials and geometric
configurations are considered for intermittent contact, neither the strategy of time-
averaged heat input nor the analytical solution derived from the half-plane model
works properly.

The finite element analysis reveals a bell-shaped relationship between the
dimensionless critical speed and the wavelength: for longer waves the dimensionless
critical speed approaches zero rather than unity; for shorter waves the critical speed
is much lower than that predicted by the analytical half-plane solution. There exists
a location where the dimensionless critical speed is the maximum. In general, the
strategy by averaging the heat input over the entire circumference is appropriate
only when the period of frictional contact is longer than the period of separation,
and when the peak value of the dimensionless critical speed is our primary concern.
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