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Effects of frictional material properties
on thermoelastic instability
deformation modes

Jiaxin Zhao1, Yun-Bo Yi1 and Heyan Li2

Abstract

This paper deals with the effects of friction material properties on thermoelastic instability (TEI) and the associated

dominant deformation mode. Both analytical and finite element models are constructed for determining the variation

of the critical speed and the dominant TEI mode. Some important factors, e.g. the nonconductive friction material as

well as the symmetric and anti-symmetric TEI deformation modes, are investigated. It has been found that the

dominant TEI deformation mode is strongly dependent on the properties of frictional material. The results show

that the symmetric mode can be dominant in the condition when the friction material has either a sufficiently large

elastic modulus or a sufficiently small thermal conductivity. These research findings are useful for vehicle clutch and

brake designs.
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Introduction

In vehicle frictional components, e.g. brakes and
clutches, hot spots are believed to be a main cause
of surface failures. In view of the thermoelastic
instability (TEI) theory, hot spots are induced by
the unstable behavior of a frictional system. To
explain it further, during the engagement of friction
components, various physical fields, e.g. the frictional
heat, the thermal deformation, the thermal stress, the
contact pressure, and the temperature field experience
intense interactions. In some extreme cases, when the
sliding speed of the friction pair exceeds a critical
value, the physical fields become unstable and the ini-
tial variations can grow exponentially with time,
which leads to local areas with high temperature
and strong contact pressure. The TEI theory has
been widely accepted and been demonstrated by dif-
ferent methods, i.e. the analytical studies,1–5 the
experimental researches,6,7 and the finite element
(FE) investigations.8–12

During the frictional process, two representative
TEI deformation modes of the metal material can
occur, i.e. the symmetric mode and the anti-symmetric
mode that are shown in Figure 1. As the unstable
behaviors under different modes are dissimilar, the
investigation on the deformation mode is a fundamen-
tal and key issue in the TEI research. In general, we
define the dominant mode as the TEI deformation

mode with the lowest critical speed. Lee13 provided
an analytical method to study the TEI deformation
modes and predicted that the anti-symmetric mode
was the dominant mode for two materials, i.e. the
asbestos-based material and the semi-metallic mater-
ial. On the basis of this conclusion, most of the pre-
vious TEI researches14–16 focused on the unstable
behavior under the anti-symmetric mode. Whereas
the study of the symmetric modes has been lacking
in the literature.

In the present paper, we will develop a FE method
to overcome the difficulties in the analytical approach
involving numerical iterations. The intent of this work
is to investigate the unstable behavior under the sym-
metric TEI deformation mode and to demonstrate the
possibility that the symmetric mode can be dominant
in some situations.
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Finite element approaches

2D finite element model

We consider two half planes that are composed of a
friction material in body 1, sliding on a metal plane
of body 2 with a finite thickness 2a, as shown in
Figure 2.

In the schematic, the finite thickness plane moves
at a velocity V to the right side while two half planes
are stationary. Different bodies are pressed together
by external pressure. In the same diagram, a coordin-
ate system (x,y) moving with the pressure perturb-
ation field is also introduced. To present a
temperature perturbation, we assume a spatially
cosine function that grows exponentially with time,
which can be written as

T ¼ Ujð yÞ cosðlxÞ expðbtÞ

¼ < Ujð yÞ expðbtþ ilxÞ
� � ð1Þ

where T, U, b, l are, respectively, the temperature
perturbation, the temperature function, the growth
rate, and the spatial frequency of the temperature per-
turbation, j¼ 1,2.

To find the corresponding growth rates for differ-
ent sliding speeds, a commonly used FE method, i.e.
the Galerkin method, is applied. The details of the FE
formulation can be found in Yi’s paper,10 which gives
a matrix equation as

ðKþ Cþ fVGBþ bHÞU ¼ 0 ð2Þ

Where

K ¼

Z
�

K
j

dW

dy

dWT

dy

� �
d�

C ¼

Z
�

ðKjl
2
þilVj�jcpjÞWWTd�

H ¼

Z
�

�jcpjWWTd�

G ¼
I
0

� �

where f, Kj, �j, cpj, � are, respectively, the friction
coefficient, the thermal conductivity, the density, the
specific heat, and the combined line of two bodies. B,
U, I represent, respectively, the transition matrix, the
temperature matrix, and the identity matrix.

Equation (2) is equivalent to

SU ¼ bU ð3Þ

where

S ¼ �H�1ðKþ Cþ fVGBÞ

If the sliding speed V is given and the transition
matrix B is known, the growth rate b can be found
from the eigenvalues of the N�N matrix S. The most
efficient approach to determine the transition matrix
B is to write a custom-made FE code of the thermo-
elastic problem in which the Fourier term can be
deleted before discretization.10 With the FE program,
the growth rates at different sliding speeds can be
deduced. When the growth rate b¼ 0, the correspond-
ing sliding speed is the critical speed.

Boundary conditions

To solve the eigenvalue problem, a set of boundary
conditions, e.g. the heat flux and the thermal stresses
must be imposed on the interface. The frictional heat
at the interface of the two bodies can be written as

q ¼ fVp ð4Þ

where q, p represent, respectively, the heat flux and the
contact pressure. The heat flux of body j has a rela-
tionship with the temperature field, as

qj ¼ �Kj
@Tj

@y
ð5Þ

Consequently, the energy balance at the interface is

K2
@T2

@y
� K1

@T1

@y
¼ fVp ð6Þ

Two representative thermoelastic deformation
modes of body 2 can occur when the system is

V
a

1

2

1

Figure 2. Schematic diagram of the two-dimensional FE

model.
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Figure 1. TEI deformation modes.
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under unstable condition. Hot spots appear on the
same position of both sides under the symmetric
mode, shown in Figure 1. Hence, the boundary
conditions for the symmetric mode can be
expressed as

y ¼ �a; q2 ¼ 0;
uy2 ¼ 0; �xy2 ¼ 0

ð7Þ

where uy, �xy are, respectively, the thermoelastic dis-
placement in the y-direction and the shear stress.
Furthermore, hot spots are spaced alternatively on
two sides under the anti-symmetric mode.
Consequently, the boundary conditions for the anti-
symmetric mode can be written as

y ¼ �a; T2 ¼ 0;
ux2 ¼ 0; �y2 ¼ 0

ð8Þ

where ux, �y are, respectively, the thermoelastic dis-
placement in the x-direction and the normal stress in
the y-direction.

Special cases

Nonconductive friction material

The analytical model used in this section is based on
Lee’s paper13 with some modifications. Those equa-
tions originally developed by Lee are not repeated
here to avoid redundancy. Here, we define A¼ la as
the dimensionless wave number. When the friction
material is a nonconductor, i.e. K1¼ 0, the perturb-
ation becomes stationary in the metal material and
therefore the solution can be simplified. After some
mathematical simplification on Lee’s model, we
obtain the following symmetric solution

sinhð2AÞ

coshð2AÞ þ 1

¼
fH1V

�

2

�
��

��
1
ðAsech2Aþ tanhAÞ

�
þ
tanhAðsinhð2AÞ þ 2AÞ

coshð2AÞþ1

ð9Þ

where

H1 ¼
2�1�2k2�2ð1þ �2Þ

M
ð10Þ

M ¼ ½�2ð1� �1ÞðAsech
2A

þ tanhAÞ þ �1ð1� �2Þtanh
2A�K2

where �, k, �, � are, respectively, the shear modulus,
the thermal diffusivity, the thermal expansion coeffi-
cient, Poisson’s ratio of the materials.

This is a degenerate nonlinear equation in the sense
that the solution V� is determined by a single variable
equation instead of two equations in the original Lee’s
model.

Similarly the degenerate anti-symmetric solution
for K1¼ 0 is determined from

sinhð2AÞ

coshð2AÞ � 1

¼
fH01V

�

2 ½�
�

��
1
ð�Acsch2Aþ cothAÞ�

þ
coshAðsinhð2AÞ � 2AÞ

coshð2AÞ�1

ð11Þ

where

H01 ¼
2�1�2k2�2ð1þ �2Þ

M0
ð12Þ

M0 ¼ ½�2ð1� �1Þð�Acsch
2A

þ cothAÞ þ �1ð1� �2Þcoth
2A�K2

In both cases

�� ¼
�1ð1þ �1Þ

�2ð1þ �2Þ
ð13Þ

��1 ¼
1

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

	V�
k�

2s2

4
3
5

1
2

ð14Þ

Va

k2
¼ V�A ð16Þ

k� ¼
k1
k2

ð17Þ

Asymptotic solution for large A

When A is sufficiently large, in a general situation
for K1>0, equation (68) in Lee’s paper can be reduced
to

K���1 þ �
�
2 þ f

H1

H2
ðK�	�1 þ 	

�
2Þ ¼

fH1V
�

2

��

��1
þ

1

��2

� � ð18Þ

and equation (69) in Lee’s paper becomes

K�	�1 þ 	
�
2 � f

H1

H2
K���1 þ �

�
2

	 

¼

�
fH1V

�

2

��	�1
��1ð�

�
1 þ 1Þ

þ
��2 � 1

��2	
�
2

� � ð19Þ

where

��1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	�21

q
��2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	�22

q
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The solution for V* can therefore be obtained by
solving equations (18) and (19) simultaneously, using
the following relationship

V� ¼ k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	�1

2 þ 1
	 
2

� 1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	�2

2 þ 1
	 
2

� 1

q
ð20Þ

Results

Convergence

To validate the convergence of the FE analysis, we
first apply the same materials as those in Lee’s
research.13 All material properties are specified in
Table 1.

In the FE progress, we define the friction coefficient
f¼ 0.4, the half thickness a¼ 10mm, and the thick-
ness of body 1 as 200mm to represent the semi-infinite
thickness. A comparison between the analytical solu-
tion and the FE solution (anti-symmetric mode) is
illustrated in Figure 3. The figure shows an excellent
agreement between the two solutions.

We also investigated the symmetric solutions, using
both the original Lee’s solutions and the FE solutions.
The symmetric solutions at lower values of K1 were
successfully obtained and presented in Figure 4.

However, we encountered some numerical conver-
gence problems in search of Lee’s solution at higher
K1 values (>0.3W/m �C). In Figure 4, the analytical
solution is validated by the FE solution using several
different values of the frication material thickness.
It can be seen that the analytical and FE solutions
consistently agree well for larger wave numbers. At
lower wave numbers, however, the FE solution has
an initial uphill region due to the geometric effect of
the finite friction material thickness. As the friction
material thickness increases, the FE solution grad-
ually approaches Lee’s solution with a good conver-
gence. Consequently, we can conclude that the
original Lee’s analytical symmetric solutions are
inaccurate at lower wave numbers. Therefore an
improved method, i.e. the FE method, is entailed to
study the unstable behavior under the symmetric
mode along with the dominant deformed shape.

Nonconductive friction material

To begin with the discussion, we first investigate the
dominant deformation mode for nonconductive fric-
tion materials. When the friction material is a thermal
insulator, the analytical solutions and the FE solu-
tions under the anti-symmetric mode show an excel-
lent agreement in Figure 5. The result exhibits
some similar trends in comparison with the case of
conductive friction material, e.g. the dimensionless
critical speed decreases at the beginning, reaches a
minimum value, and then increases with the wave
number.

The symmetric solutions are shown Figure 6.
Again, the analytical and FE solutions agree with
each other very well. It can be seen that the dimen-
sionless critical speed for K1¼ 0 increases almost lin-
early with the dimensionless wave number A, showing
a behavior entirely different from those involving

Figure 3. Dimensionless critical speed under the anti-sym-

metric mode.

FE: finite element.

Figure 4. Dimensionless critical speed under the symmetric

mode.

FE: finite element.

Table 1. Material properties.

Material Cast iron Material A Material B

E (GPa) 125 0.53 1

� 0.25 0.25 0.25

a (�C�1) 1:2� 10�5 3� 10�5 1� 10�5

K (W/m�C) 54 0.5 5

k (m2=s) 12:98� 10�6 2:69� 10�5 3:57� 10�6
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conductive friction material. In comparison with
Figure 5, the critical speed in Figure 6 is consistently
lower, implying that the symmetric modes become
dominant when the conductivity of the friction mater-
ial approaches zero.

Thermal conductivity

The frictional material design is used for improving
the performance of the frictional system. Meanwhile,
the material optimization can also contribute to the
mitigation of TEI-induced hot spots. We keep other
parameters unchanged (Material A), except for the
thermal conductivity as K1¼ 0.5, 0.6, 0.7W/m�C.
The critical speeds under the two deformation
modes are presented in Figure 7. When the thermal
conductivity of the friction material increases, the crit-
ical speeds under both modes decrease accordingly.

An explanation is that the heat distribution is more
uniform when the friction material has a higher ther-
mal conductivity.

Meanwhile, the growth rates of critical speeds
under the two modes are significantly different, e.g.
when thermal conductivity increases from 0.5W/
m�C to 0.6W/m�C, the growth rates of the anti-sym-
metric mode and the symmetric mode are, respect-
ively, 20.6% and 30.3% (la¼ 0.6). In addition, as
mentioned before, the symmetric mode is dominant
when the friction material is a thermal insulator.
Therefore a different behavior of friction material
with a low thermal conductivity can be expected.

We select small values of thermal conductivity as
K1¼ 1� 10�4, 1� 10�3W/m�C, and the relevant
critical speeds are shown in Figure 8. Apparently,
the symmetric TEI mode can be predominant
when the friction material has a sufficiently small

Figure 6. Symmetric solution for nonconductive friction

material.

Figure 7. Effect of thermal conductivity of the friction material on the critical speed: (a) anti-symmetric; (b) symmetric.

Figure 5. Anti-symmetric solution for nonconductive friction

material.
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thermal conductivity. In Figure 8, the transient point
of the two deformation modes is la¼ 0.25 when
K1¼ 1� 10�3W/m�C and la¼ 0.52 when
K1¼ 1� 10�4W/m�C. Additionally, the dominant
region of the symmetric mode is larger with the smal-
ler thermal conductivity, e.g. when K1¼ 1� 10�3W/
m�C, the dominant region is la¼ 0–0.25, when
K1¼ 1� 10�4W/m�C, the dominant region is
la¼ 0–0.52.

Elastic modulus

Another important factor related to the system
instability is the elastic modulus. According to the
analytical work13 and the experimental data,6 under
the anti-symmetric mode, hot spots are discouraged
when the friction material has a low elastic modulus.
Similarly, we maintain the friction material

parameters constant except the elastic modulus
(E1¼ 0.53, 0.58, 0.63 GP). The corresponding critical
speeds calculated by the FE analysis are illustrated in
Figure 9.

Apparently, the elastic modulus has a similar effect
on the critical speed under the two deformation
modes. When the elastic modulus increases, the crit-
ical speed decreases as a result of the uniformity of the
contact pressure at the interface.

It is also noteworthy that the elastic modulus of
friction material A shown in Table 1 is only
0.53GPa. However, the elastic modulus of typical
frictional materials can be up to 10GPa.17 To inves-
tigate the unstable behavior of friction materials with
large elastic modulus, we apply elastic modulus as
E1¼ 4, 6GPa and then exhibit the corresponding crit-
ical speeds in Figure 10.

Figure 8. Critical speeds under two deformation modes with

small friction material thermal conductivity.

Figure 9. Effect of elastic modulus of the friction material on the critical speed: (a) anti-symmetric; (b) symmetric.

Figure 10. Critical speeds under two deformation modes

with large friction material elastic modulus.
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Two important conclusions can be obtained from
Figure 10. Primarily, the symmetric deformation
mode becomes dominant when the elastic modulus
of the friction material is sufficiently large, e.g.
E1¼ 4GPa, the symmetric solution is lower in the
range la¼ 0–0.12.

Secondly, a transient mode from the symmetric
mode to the anti-symmetric mode may appear
during the frictional process. In Figure 10, the transi-
ent moments are la¼ 0.12 for 4GPa and la¼ 0.22 for
6GPa. Consequently, the unstable behavior of fric-
tional materials with large elastic modulus is disparate
and the symmetric deformation mode can be the dom-
inant one.

Thermal expansion coefficient

Thermal expansion is the trend to change volume in
response to the variation of the temperature field.
Similarly, we maintain other parameters constant
(MaterialA), except for the thermal expansion coefficient
as a1¼ 3, 10, 20�10�5�C�1. The critical speeds under the
two deformation modes are shown in Figure 11.

A comparison between Figure 11(a) and (b) shows
that the effects of the thermal expansion coefficient on
the two deformation modes are quite different. For
example, when a1 increases, the symmetric solution
increases correspondingly, while the anti-symmetric
solution almost keeps constant.

To make a further investigation, we reproduce the
results by using sufficiently small values of thermal
expansion coefficient as follows a1¼ 3�10�8 �C�1

and �1¼ 3� 10�10 �C�1, and the corresponding crit-
ical speeds are shown in Figure 12, in which the anti-
symmetric solutions (solid lines) are lower throughout
the entire range. Consequently, we can predict that
the anti-symmetric mode is always dominant regard-
less of the coefficient of thermal expansion. In other
words, the friction material thermal expansion coeffi-
cient has a negligible effect on the dominant deform-
ation mode.

Figure 11. Effect of thermal expansion coefficient of the friction material on the critical speed: (a) anti-symmetric; (b) symmetric.

Figure 12. Critical speeds under two deformation modes

with small friction material thermal expansion coefficient.

Figure 13. Asymptotic solution and Lee’s symmetric

solutions.
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Asymptotic solution

Figure 13 is Lee’s solution for K1 varying between 0.1
and 0.3W/m �C, along with the asymptotic solution
for A!1, which is determined from equation (20).
To validate the asymptotic solution, Lee’s solution of
V* at A¼ 10 is obtained as a function of K1 and
compared with equation (20), as shown in
Figure 14. Again excellent agreements have been
achieved. The result also indicates that the asymptotic
solution is applicable for A>10.

Conclusion

The effects of friction material properties on both
the symmetric solution and the dominant deformation
mode have been verified by the analytical and the FE
approaches. The results show that the symmetric
TE mode can become predominant in the condition
when the friction material has either a large elastic
modulus or a small thermal conductivity. Under
these conditions, a transient state from the symmetric
mode to the anti-symmetric mode can appear dur-
ing frictional sliding. Moreover, the symmetric domin-
ant region depends on the friction material properties.
Meanwhile, the effect of the thermal expansion coeffi-
cient on the dominant TEI mode can be negligible.

Furthermore, the symmetric solution of the critical
speed increases when the thermal conductivity or ther-
mal expansion coefficient increases. By contrast, the
symmetric solution decreases when the elastic modu-
lus increases.
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