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ABSTRACT

Numerical analyses are performed on thermal buckling of annular rings using
a reduced Fourier method. The stress sti�ness matrix is derived from the
geometric nonlinearity in the Green strains with a prede�ned circumferential
wave number. The method is �rst validated through the commercial software
Abaqus using an axisymmetric model. It is then implemented to solve
more general nonaxisymmetric problems with multiple waves along the
circumference. It is shown that there exists a particular wave number with
which the buckling temperature reaches a minimum. This research has
potential applications in automotive clutch and brake designs against thermal
buckling.
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Introduction

Frictional heat generation in automotive brake and clutch systems can cause excessive thermal stresses,
thermoelastic instability (TEI) as well as thermal distortion or buckling [1–3]. Although the investiga-
tions on TEI have been performed by many researchers over the last decades, the interest in thermal
buckling is, more recent, mainly prompted by the experimental �ndings in multidisc clutch applications
[4]. The observed nonuniform temperature distribution along the radius can lead to a hoop stress or
bending moment that exceeds the upper limit of elastic stability [5]. Unlike a straight beam or column,
the axisymmetric mode or the coning mode in brake and clutch discs can be one of the dominant modes
with the lowest buckling temperatures, in addition to the circumferential wavy modes or the so-called
potato chipmodes [6].

Timoshenko’s beam theory [7] can be applied on a curved beam to derive an approximate solution for
the critical buckling load in a disc ring, assuming that the beammay buckle laterally under a su�ciently
large bending moment. However, the solution thus obtained is based on the classical beam model with
a simpli�ed treatment of the stress variations in the radial direction. This can lead to an inaccuracy in
the solution when the radial width is comparable with the disc size. Ma [8] investigated the e�ects of
three-dimensional geometries and di�erent material properties on the critical buckling loads based on
a set of �nite element analyses using Abaqus. Later Zhao et al. [9] extended Ma’s techniques by taking
into account the e�ects of a variety of temperature pro�les. It was found that the radial variation of
temperature considerably a�ects the critical buckling load.

The commercial �nite element codes such as Abaqus can handle three-dimensional thermal buckling
problems using the appropriate element types [10]. Usually, only the lowest buckling modes have
practical meanings, however these modes can have very close eigenvalues, especially in a 3D model.
Therefore, in many situations, it is still necessary to extract a relatively large number of modes from
the solution. We found that it is inconvenient to study the eigenvalue as a function of the wave
number by manually sorting the solutions according to the deformation shapes. On the other hand, the
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axisymmetric element library available in the so�ware makes it possible to deal with the coning modes
in the special case, when the thermal loading and the deformation shape are both circumferentially
uniform and can therefore take advantage of the geometric symmetry. However it has been found that
the buckling temperature of coning modes could be much higher than those of the potato chip modes.
Using an axisymmetric model would be inappropriate when the deformation and thermal stresses were
both nonaxisymmetric.

It is a natural inclination to implement the Fourier method to solve the thermal buckling problems
for axisymmetric geometries. The methodology introduced in this research has been adapted from
the prior research on TEI problems in brakes and clutches [11] as well as thermoelastic damping in
microelectromechanical systems (MEMS) systems [12, 13]. Although the mechanisms di�er consider-
ably in these phenomena, the similar strategy to reduce the dimensionality through the Fourier scheme
equally applies. For brakes and clutches in particular, due to their ring shapes, the temperature and
displacement can be expressed in the Fourier terms and hence the circumferential dependence of the
variables can be eliminated from the governing equations. This leads to a �nite element formulation
only on the cross-sectional area. With the implementation of planar elements, the computational e�ort
can greatly be reduced. However, each node retains all three degrees of freedom along the radial, axial,
and circumferential directions, respectively.

Method

According to the theory of elasticity, buckling is caused by the geometric nonlinearity in a deformed
structure, which is equivalent to inserting an additional sti�ness term to the system. The general �nite
element formulation of the buckling problem involves the construction of stress sti�ness matrix [Kσ ]

that is added to the sti�ness matrix [K]. This stress sti�ness matrix is then used to develop an eigenvalue
equation for the buckling load as follows [14]:

− [Kσ ]−1[K]{δU} = λ{δU} (1)

inwhich the eigenvalue λ is themultiplier of the reference load. {δU} is the buckling displacement, which
can be caused by any type of mechanical loadings such as bending moments or thermal stresses.

The stress sti�nessmatrix is related to the geometric nonlinearity in theGreen strains [15]. In general,
the Green strain tensor, E, contains both the linear and quadratic terms and is based on the following
de�nition [16]:

E =
1
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where I is the identity matrix, and the deformation gradient, F, can be expressed in the cylindrical
coordinate systems
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The linear terms of the strains in cylindrical coordinates can be expressed as [17]
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where ur , uθ , uz are the displacement components along the radial, circumferential, and the axial
direction, respectively. By subtracting the linear terms from the Green strains, we can obtain the
following nonlinear terms:

1E =





1E11 1E12 1E13
1E21 1E22 1E23
1E31 1E32 1E33



 (5)
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1E21 = 1E12 (12)

1E31 = 1E13 (13)

1E32 = 1E23 (14)

We assume the periodic distributions of the temperature and displacements as follows:

T = 2 cos(pθ); ur = Ur cos(nθ); uθ = Uθ sin(nθ); uz = Uz cos(nθ) (15)

in which p represents the wave number (i.e., “hot spot” number) of the temperature distribution along
the circumference; n represents the wave number of the deformation in the circumference. In general, p
is not necessarily equal to n. For example, a circumferentially uniform temperature distribution (p = 0)
can lead to both coningmodes (n = 0) and potato chipmodes (n 6= 0).

According to [14], the stress sti�ness matrix can be obtained through

[Kσ ] =

∫

[G]T





s 0 0
0 s 0
0 0 s



 [G]dV (16)

in which V represents the volume, G is obtained from the nonlinear terms 1E in the Green strains and
the shape functions [N]. The matrix [s] contains the thermal stresses induced by the reference load.

[s] =





σrr σrθ σzr
σrθ σθθ σθz

σzr σθz σzz



 (17)

The constitutive law of thermoelasticity has the following matrix form

σ = [C]ε − [D]T (18)
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where the coe�cient matrix C is the stress–strain relationship.

[C] =
E

(1 + ν)(1 − 2ν)
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where E is Young’s modulus and ν is Poisson’s ratio. D is associated with thermal expansions

[D] =
Eα

(1 − 2ν)

[

1 1 1 0 0 0
]T

(20)

The strain vector ǫ can be expressed in a matrix form related to the nodal displacement vector U:

ε = [B]U (21)

where
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Note that σ and ǫ here are thermally induced stresses and strains. SinceT varies with cos(pθ), apparently
σ also varies with cos(pθ). It implies that the nonlinear terms in the Green strains 1E would be zero if
both n and p are nonzero integers, which leads to a zero stress sti�ness matrix, due to the following
orthogonality relationships of the sine and cosine functions:

∫ 2π

0
cos2(nθ) cos(pθ)dθ = 0

∫ 2π

0
sin2(nθ) cos(pθ)dθ = 0 (24)

∫ 2π

0
cos(nθ) sin(nθ) cos(pθ)dθ = 0

For an axisymmetric temperature distribution, namely, p = 0, the above formulation leads to
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[Kσ ]{z} =

∫∫





σrr
∂[N]
∂r

∂[N]T

∂r + σθθ
n2

r2
[N][N]T + σzz

∂[N]
∂r

∂[N]T

∂r +

σrz

(

∂[N]
∂r

∂[N]T

∂z + ∂[N]
∂z

∂[N]T

∂r

)



 rdrdz (27)



JOURNAL OF THERMAL STRESSES 1245

In a special case where both temperature and deformation are axisymmetric, i.e., n = p = 0 andUθ = 0,
the above equations can further be reduced to

[Kσ ]{r} =

∫∫
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The sti�ness matrix [K] can be obtained using the �nite element formulation discussed in the prior
research [11]:

[Ke] =

∫∫

�

[B]T[C][B]rdrdz (30)

The above �nite element method based on the Fourier scheme has successfully been converted into a
Matlab code. The eigenvalue equation, Eq. (1), is solved to �nd the buckling temperature gradient by
implementing the built-in eigenvalue function eig in Matlab.

Results and discussion

Convergence study

To validate the proposed Fourier method, we �rst performed a convergence test on the critical buckling
temperature of an annular ring with free boundaries. Thematerial properties and dimensions of the ring
are tabulated in Table 1. The axisymmetric mode shape has been assumed, so that the circumferential
wave number is set to zero in the analysis. The axisymmetric elements with the linear interpolating
functions have been used to discretize the cross-sectional area of the ring. The temperature is assumed as
a linear function of the radial coordinate with a zero value at the inner radius and the maximum value at
the outer radius. Therefore the eigenvalue, or the buckling temperature, is equivalent to the temperature
at the outer radius. A positive eigenvalue indicates an increase in the temperature in the radius, whereas
a negative one indicates a decrease in the temperature. Figure 1 shows the four dominant bucklingmode
shapes from the �nite element analysis. These modes have the lowest buckling temperatures among all
modes. The colors in Figure 1 demonstrate the distribution of the magnitude of the nodal displacement.
The element number along the thickness is set to �ve, whereas the element number in the radius, m,
varies between 5 and 100 to show the relationship between the buckling temperature and the mesh
size (Figure 2). The results of the three leading modes are also compared. The �rst mode is a coning
mode, with the axial displacement linearly distributed in the radius. The computed buckling temperature
based on the Fourier model starts with −185.9 at m = 5 and converges to −178.3 at m = 100, with
a variation of merely 4%, showing an excellent convergence speed for the �rst mode. The negative
value indicates that the temperature distribution is actually reversed, i.e., the higher temperature occurs
at the inner radius. The result was also compared with Abaqus using the axisymmetric element type
CAX4I, which yielded a buckling temperature of −177.0 at m = 100. For higher order modes, the
deformed mode patterns (i.e., the eigenvectors) have nonlinear pro�les, with one or multiple reversals
across the radius. The computed buckling temperature converges well whenm is above 50 but deviates
signi�cantly whenm falls below 20. In addition, the results based on the Fourier model agree well with
the results from Abaqus when m = 100. It has been concluded that 50 elements in the radial direction
are su�cient to obtain a satisfactory numerical accuracy. It is noticed that the second and third modes
have signi�cantly higher buckling temperatures with two or three orders of magnitude higher than the
�rst mode. In practice, typical operating temperatures of brakes or clutches are well below 1000◦C,
therefore we conclude that the coningmode is the only axisymmetricmode having practical signi�cance
in engineering applications.
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Table 1. Parameters used in the thermal buckling models.

Inner Outer Thickness a Young’s Poisson’s Thermal expansion

radius Ri (mm) radius Ro (mm) (mm) modulus E (GPa) ratio ν coe�cient α (K−1)

86 125 3 160 0.29 1.27 × 10−5

Figure 1. The dominant four axisymmetric buckling modes for an annular ring with free boundaries.

Figure 2. A convergence study on the relationship between the buckling temperature and the element number in the radial direction.

E�ects of boundary conditions

It is well known that an elastic column under di�erent boundary conditions has di�erent buckling loads.
The boundary condition in the current problemplays an equally important role in the buckling behavior.
Figure 3 is the relationship between the buckling temperature and the buckling mode using the Fourier
model and Abaqus, for a clutch model with free boundaries. Fi�y elements were used in the radius
for all results. For the �rst three dominant modes, the two results are almost identical. Starting from
the fourth mode, however, there is an apparent discrepancy between the two curves. This is possibly
caused by the di�erent interpolating functions and the integration schemes involved in the twomethods.
Also, shear locking may play an important role since the linear elements have been used in the Matlab
computation.

Figure 4 shows the leading buckling modes for a clutch model with �xed boundaries at the inner
radius. The �rst model looks like a cantilever beam despite the fact that it represents the cross section
of an annular ring. The relationship between the buckling temperature and the buckling mode for the
model with �xed boundary conditions at the inner radius is shown in Figure 5. Again, the results of the
�rst three modes show good agreements, but they deviate each other starting from the fourth mode. In
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Figure 3. Comparison of the computed buckling temperature between the Fourier model and Abaqus for an annular ring with free
boundaries.

Figure 4. The dominant four axisymmetric buckling modes for an annular ring with �xed inner radius.

Figure 5. Comparison of the computed buckling temperature between the Fourier model and Abaqus for an annular ring with �xed
inner radius.
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fact there is a discrepancy of 10% for the fourth mode. In the model with �xed boundaries, however, the
buckling temperatures are much higher than those of the model with free boundaries. For example, the
critical temperature of the �rst mode here is −1570, with an order of magnitude higher than the value
of −178 for free boundaries.

Nonaxisymmetric bucklingmodes

In the above discussions on axisymmetric buckling modes, we found that the buckling tempera-
tures are typically much higher than the operating temperatures in real clutch applications, and they
only have theoretical signi�cance except for the �rst mode or the coning mode. In comparison,
nonaxisymmetric buckling modes have much lower critical temperatures and they are therefore of
more signi�cant importance. We investigated these nonaxisymmetric modes with the implementation
of the Fourier elements by setting the circumferential wave number to a nonzero integer in the �nite
element formulation. The temperature distribution is still assumed to be axisymmetric, even though the
deformed shape has multiple waves in the circumference. We encountered some numerical di�culties,
when implementing the model with free boundaries due to the singularities in the matrices. To simplify
themathematical treatment, the �xed boundary condition is assumed at the inner radius here to prevent
rigid body motions in the eigenmodes. The results from both the Fourier method and Abaqus have
been obtained for comparison. In the Fourier model, the cross section has been discretized in the
same way as the previous discussions on the axisymmetric modes. In Abaqus, the element type C3D8I
(i.e., linear hexahedron 3D elements with incompatible modes to improve the bending behavior) has
been used in the computation. The model was discretized in the entire ring with 20 elements along
the radius, a single element along the thickness and 100 elements along the circumference. Therefore,
the total element number in the 3D �nite element model is 2000. The �rst 100 eigenmodes were
extracted to investigate the relationship between the buckling temperatures and the circumferential wave
number.

Figure 6 shows the dominant mode shapes. Mode A is the axisymmetric coning mode with n = 0,
which is identical to the �rst mode in Figure 4. Modes B–F are nonaxisymmetric buckling modes with n
being a nonzero integer. Among them,ModeDwith n = 6 is the dominantmode with the lowest critical
buckling temperature of 746 based on the Fourier model. Figure 7 shows the relationship between the
critical temperature and the circumferential wave number. Clearly, the Fourier model and the Abaqus
model yielded very close results over the entire range of wave number from 0 to 15. The coningmode has
the lowest buckling temperature (absolute value) among the three modes with the negative eigenvalues.
There is an interesting transition on the sign of the buckling temperature from negative at n = 2 to
positive at n = 3. Moreover, the buckling temperature has a nonlinear relationship with n in the positive
region, with the lowest value located at n = 6 as mentioned above. Figure 8 is the same as Figure 7,
except that the positive region has been enlarged. This �gure is reminiscent of the relationship between
the critical sliding speed and thewave number in TEI analysis inwhich there exists a lowest sliding speed.
It is noticed that the modes with n = 5–9 have critical temperatures below 1000◦C, which could be in
the vicinity of the temperature range in clutches. In real applications, the mechanical constrains such as
the teeth on the edge of clutch disk or the splines in the sha� may impose restrictions on the available
mode patterns. Therefore, any of these modes could be excited depending on the speci�c boundary
conditions.

It should be pointed out that the above results were based on the boundary condition with �xed
inner radius, which is a rare case in realistic applications. Some of the buckling temperatures obtained
are higher than the melting points of metals and these modes can never be available in reality. For a
model with free boundaries, on the other hand, the dominantmode ismost likely a coningmodewith the
corresponding buckling temperaturemuch lower than the value aforementioned [9]. In real applications,
the boundary conditions of the discs are somewhere between fully constrained and freely movable. As
a consequence, the realistic buckling temperature should be interpolated between two extremes. We
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Figure 6. Dominant buckling modes for an annular ring with �xed inner radius, with both axisymmetric and nonaxisymmetric modes
included.

Figure 7. Buckling temperature as a function of circumferential wave number for an annular ring with �xed inner radius.

encountered somenumerical di�cultieswhen implementing the free boundary conditions to the Fourier
model for nonaxisymmetric buckling modes, due to the singularities caused by a freely movable rigid
body. We will endeavor to resolve this issue in the future.
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Figure 8. Enlarged �gure showing the positive buckling temperature as a function of circumferential wave number.

Conclusion

A reduced �nite element method using the Fourier scheme is developed to predict the critical thermal
buckling temperature and the associated deformation modes in automotive brakes and clutches or
any other ring-shaped mechanical components subjected to high thermal stresses. In this study, the
temperature distribution is a prede�ned �eld, and thematrix equation is constructed based on the Green
strain formulation with geometric nonlinearities. The reduced dimensionality in the �nite element
discretization greatly improved the computational e�ciency. The numerical solutions obtained from the
Fourier scheme agree with those from Abaqus using a full three-dimensional model. Both wavy modes
and coningmodes have been obtained from the eigenvectors of the governing equation. The results have
shown the existence of the lowest buckling temperature among all mode shapes. The circumferential
wave number at the global lowest buckling temperature varies and it is determined by the material
properties and geometric shapes. The buckling temperature of the model with free boundaries is
signi�cantly lower than the one with constrained boundaries. Although the analyses were based on
a linear radial temperature assumption (which was consistent with the multidisc clutch experiment
recently reported in the literature), the samemethodology can be applied to other applications involving
nonlinear temperature pro�les as well. In addition, although the traditional TEI analysis does not
incorporate the geometric nonlinearity, the current research implies that both thermal buckling and TEI
exhibit similarmode patterns and that the two phenomena could be coupled together as the temperature
gradient is su�ciently high.
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