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We developed a random walk model for solving the diffusion problem arising from composite materials of particulate
inclusions with different shapes. Our two-phase material system contains circular or elliptical impermeable inclusions
that are randomly embedded in a matrix material. A computational algorithm was developed for random walk simula-
tion of molecules and to estimate the effective diffusion coefficient of the composites. The random walk model has been
validated by solutions from finite element analysis and effective medium theories. Our computational results show that
the density of random distribution and the volume fraction of inclusions have significant effects on effective diffusion
coefficients. Moreover, the aspect ratio of inclusions can significantly reduce diffusion speed when the volume fraction
of inclusions is greater than ∼ 30%.
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1. INTRODUCTION

Diffusion phenomena of heterogeneous materials have been widely studied, because the mechanical properties of
composite materials can degrade in humid environments. Recently, carbon fiber–reinforced composites have been
widely applied in the area of aerospace (Soutis, 2005), civil (Tavakkolizadeh and Saadatmanesh, 2003), and auto-
motive (Rezaei et al., 2008) engineering, due to their light and strong properties. However, matrix materials such
as resin or epoxy can absorb moisture from the surrounding environment, and water can diffuse in the matrix and
degrade the matrix/reinforcement interface or interphase and reduce composite stiffness (Davies and Zhang, 1995).
The diffusion coefficient is the most important parameter indicating diffusion behavior. Most of the techniques used
to study the diffusion coefficient are analytical methods and finite element analysis (FEA). Maxwell–Garnett (MG)
theory (Maxwell, 1873; Levy and Stroud, 1997) provides a method for predicting the effective diffusion coefficient
for composite materials. In the MG model, a spherical inclusion is inserted into a circular shell of the matrix and
assumes that the inclusion does not change the concentration field outside. Depending on the steady-state equation,
the effective diffusion coefficient can be determined. However, the theory has some restrictions; for example, voids
in the model cannot be impenetrable, and model equations are applicable for low-density systems only. Some re-
searchers have provided solutions and improved MG theory (Gueribiz et al., 2009; Kalnin et al., 2002; Ruppin, 2000)
to predict the effective diffusion coefficient for composite materials with impermeable inclusions. However, the shape
of inclusions are merely spheres in three dimensions and circles in two dimensions. For some materials with large
aspect ratios, no conclusion has been reached regarding the aspect ratio effect on the effective diffusion coefficient.
Other approximations including the self-consistent approximation (Davis, 1977; Hill, 1965) and differential effective
medium theory (Sheng, 1990) are widely used as well. However, most of these approximations have been found to
be inaccurate if the system has a high-volume fraction of inclusions. Traditional numerical alternatives such as the
finite element method (FEM) are widely used to overcome the difficulties involved in analytical approaches. Joliff

1543–1649/18/$35.00 © 2018 by Begell House, Inc. www.begellhouse.com 131



132 Qiu & Yi

et al. (2013) developed a numerical model based on the FEM to analyze the diffusion coefficient of random carbon
fibers distributed in a matrix. Tawerghi and Yi (2009) built a finite element model of a unit square plate containing
both uniformly and randomly distributed circular voids to measure composite conductivity. Hou and Wu (1997) used
the same method to study composite materials embedded with elliptical particles. Bakke and Øren (1997) presented
a model describing ionic electrical conduction in porous media. However, modeling composite materials with finite
element mesh requires thousands or even millions of nodes to solve the Laplace equation with sufficiently high accu-
racy, and this can be impractical when the particles have complex shapes (Qiu et al., 2015). Therefore, it is preferable
to have a more efficient method to predict the effective diffusion coefficient. The random walk method is commonly
used to estimate the diffusivity and conductivity of heterogeneous materials (Cukier et al., 1990; Tobochnik et al.,
1990). This method is particularly useful because of its simple assumptions and mathematical formulation, Based on
Brownian motion, it describes the stochastic diffusion of molecules traveling through space that is filled with other
particles or physical barriers among continuous-time stochastic processes. One of its well-known applications is for
estimating the diffusion coefficient in porous media made of an insulating matrix and pore space saturated with con-
ducting fluid (Revil and Glover, 1997; Sahimi, 2011; Shankland and Waff, 1974). Other examples, including carbon
fiber–reinforced epoxy-resin composites, can also be investigated by the random walk method (Wright, 1981). With
inorganic reinforcing fiber, the amount of water that can be absorbed depends primarily on the chemical nature of the
resin matrix and the environment to which it is exposed. This phenomenon can be best described as water molecules
randomly moving in a resin matrix until they move out of the composite. Although the random walk method offers
many benefits for the study of heterogeneous materials, most currently focus on simple geometries such as circular or
square shapes, and inclusions in the system are usually arranged in an organized pattern (Tavakkolizadeh and Saadat-
manesh, 2003; Trinh et al., 2000). It is our intention in the present study to extend the method to other applications
involving more complex geometries, such as elliptical inclusions.

2. METHODS

2.1 Random Walk Method

2.1.1 Diffusion Coefficient of a Continuous Medium

The random walk model, the primary component of the entire study of the diffusion problem for heterogeneous mate-
rials, relies on the equivalence of Laplace’s equation and the diffusion equation. In general, the diffusion of composite
materials with impermeable inclusions can be described as a “walker” that randomly walks in the matrix phase of
the composite with a constant diffusion coefficient. Particle diffusion inn-dimensional space can be described as
Brownian motion, and the diffusion coefficient for isotropic materials in random walk theory can be calculated by
mean-square displacement (MSD) of walker versus time. Using a sufficiently long amount of time, the diffusion
coefficient of the matrix can be estimated by the following equation:

r2 = 2nDt, (1)

wherer2 is MSD,D is the diffusion coefficient of the system,t is the total random walk time, andn is the dimensional
space in which the walker travels through the phase. MSD of a set of random walk stepln, given by

r2 =
1
N

N∑
k=1

|lk|2, (2)

wherel is the length of each step, andN is the number of steps in the random walk simulation. In the two-dimensional
(2D) case in whichn = 2, we can convert Eq. (1) to

r2 = 4Dt, t= Nτ, (3)

whereτ is the particle travel time for each step. Therefore,

D =
1

4N2τ

N∑
k=1

|lk|2. (4)
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To make the same diffusion condition for comparing different methods and providing a dimensionless expression for
the effective diffusion coefficientDeff , we set a constant dimensionless step lengthl = 0.001 and a constant step
time τ = 1 s for the entire study. Depending on Eq. (4), we first measure the diffusion coefficient of matrixDm as
follows:

Dm =
< r >2

4N
. (5)

Therelationship between MSD and diffusion time is linear, and the slope of the curve is the diffusion coefficient of
the matrix. We allow a particle to randomly walk in a unit square and measure MSD at each time interval. Figure 1
shows MSD of random walks averaged from 1000 simulations, with relative error< 1 × 10−4. The number of steps
N ranges from 0 to 2000. In Fig. 1, the blue line represents the value ofr2 and the red line the curve-fitting results.
According to the curve-fitting results, we estimate the diffusion coefficient of the matrix to be 2.50334× 10−5 s−1.

In this study, we use the Monte-Carlo method to create a random system that contains all circular or elliptical
inclusions randomly distributed in the matrix without overlapping one another. All of the inclusions are confined
inside the unit square. To improve numerical efficiency for elliptically shaped voids, we create elliptical polygons
with segments of equal length to represent the ellipses. Figure 2(a) shows two elliptical polygons, with the blue line
representing polygons of ten segments and the red line representing a polygon of 100 segments. For accuracy, we
used the 100-segment elliptical polygon in our model.

Our method differs from the simple lattice random walk (Vineyard, 1963), in that the molecules in our model
move in an arbitrary orientation at each step, which represents a more realistic situation for diffusion. At each random
walk step, a random number generator based on current time is used to generate a number between 0 and 1. Thus,
a different set of random numbers is generated in each time step. The coordinates of the molecule at each step were
computed from the following equations:

Xi+1 = Xi + l sinα, Yi+1 = Yi + l cosα, (6)

whereX andY are the coordinates of molecules at each time step, andα is the angle of motion direction. Because
all of the inclusions are impermeable, we developed an algorithm in which the molecules bounce back when they
meet the inclusion–matrix interface. For the left and right sides of the plate, we assume that they are insulated. In
other words, the molecules can only penetrate from bottom to top, and this is then reflected by the walls according
to the law of reflection. Figure 2(b) shows that a single molecule moved one step and hit the surface of the elliptical

FIG. 1: MSD of random walks averaged from 1000 simulations in a 2D unit square
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FIG. 2: (a) Elliptical polygon with ten and 100 line segments of equal length to represent the elliptical void; (b) trajectory of
a molecule before and after it hits the elliptical polygon with 100 segments; (c) molecule bounced in the randomly distributed
circular voids, with constant stepsl = 0.001; (d) molecule bounced in the randomly distributed elliptical voids, with constant steps
l = 0.001

inclusion. We determine the normal line (line OA) of the inclusion surface from the geometry of the elliptical polygon.
In Fig. 2(b), we segment the ellipse with 100 straight lines, where OB is the incident path, OD the new path of the
molecule, and OE the reflection path of OB. The algorithm checks the molecular position first. If the molecule meets
the boundary of a polygon [e.g., OC in Fig. 2(b)], we implement the aforementioned algorithm to determine the angle
of reflection according to the following equations:

−→n =

−→
OA∥∥∥−→OA

∥∥∥ , (7)
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−−→
OE =

−−→
OB − 2(

−−→
OB · −→n )−→n , (8)

−−→
OD =

∥∥∥−−→OC
∥∥∥ −−→

OE∥∥∥−−→OE
∥∥∥ . (9)

Figure 2(c) shows the path of molecules when they reflect on the circular voids, and Fig. 2(d) shows the molecular
path for ellipses when using the random walk algorithm.

At the beginning of a simulation, the molecule started from a random point on one side of the unit square and
randomly walked in the system until it reached the opposite side or completed the prescribed maximum number of
steps without reaching the opposite side of the square. We then recorded the total number of steps and repeated the
simulationN times. In the end, we counted the number of trials that the molecule successfully reached the opposite
side to represent the mass concentration. This process can be considered to be an approximation of a transient Fick’s
diffusion. Figure 3 shows an example of a successful random walk in a system with 40 circular inclusions, each with
a radius of 0.05. The molecule started at the midpoint of one side of the square, and it took a total of 58,829 steps for
the molecule to cross the entire system. The red line in the figure represents the trajectory of molecular movement.

2.2 Analytical Solution

To verify the random walk model, we used some existing approximate solutions found in the literature. For example,
the MG equation can be used to estimate the effective diffusion coefficient in a two-phase composite as follows:

Deff = Dm

[
1+

d(Df −Dm)Vf

Df + (d− 1)Dm − (Df −Dm)Vf

]
. (10)

In this equation,Dm andDf are the diffusion coefficients of the two phases,Vf is the volume fraction of the in-
clusions, andd represents the system dimension; in the 2D system,d is equal to 2. However, it is well known that
the standard MG method is inaccurate when inclusions are impenetrable. For impermeable inclusions, an improved

FIG. 3: Set of vertices visited by a 2D random walk in circular voids with a volume fraction of 31.41%. The walker began at the
center of the box, and after 58,829 steps, it reached the boundary.
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FIG. 4: Convergence of finite element model–average temperature as a function of element number

method was developed by Kalnin et al. (2002). With this method, instead of considering the concentration of dif-
fusing particles in the matrix as equal to the effective medium, these authors introduced a parameterλ, where, for
impenetrable inclusions,

λ =
1

1− Vf
. (11)

With this modification, the improved MG method for impenetrable inclusions can be summarized in Eqs. (12) and
(13) in two dimensions as follows:

Deff = Dmλ

[
1+

d(Dmλ−Df )Vf

λDf + (d− 1)Dm − (λDf −Dm)Vf

]
, (12)

Deff =
Dm

1− Vf

[
1− 2Vf

1+ Vf

]
, (13)

whereVf is the volume fraction of the inclusions, andDm is the diffusion coefficient of the matrix. To compare the
analytical method with numerical methods, we treatedDm as a constant (Dm = 2.50334× 10−5 s−1), which we
explain in the previous discussion.

Bruggman’s effective medium (BEM) model (Bruggeman, 1935) also provides an acceptable approximation of
macroscopic properties of composite materials at lower-volume fractions of inclusions. For a two-phase system, the
equation may be shown as

Vf
Df −Deff

Df + (d− 1)Deff
+ (1− Vf )

Dm −Deff

Dm + (d− 1)Deff
= 0, (14)

Deff = (1− 2Vf )Dm. (15)

2.3 FEM

2.3.1 Element Generation and Partition

In this study, we use FEA to validate the random walk model. To generate a system of randomly distributed nonover-
lapping circles or ellipses in a unit square, we develop a dynamic collision algorithm on the basis of C-programming
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language (Bell Labs, Murray Hill, New Jersey) to fully disperse the inclusions. We generate three-node triangular shell
elements for thermal analysis in the matrix using MatrixLaboratory (MATLAB; MathWorks, Natick, Massachusetts)
and COMSOL Multiphysics (COMSOL Inc., Stockholm, Sweden). The mesh density of the model depends on the
curvature of the geometry. Therefore, in MATLAB a few parameters including the curvature cutoff threshold and
maximum element size are defined to avoid excessive local elements and numerical inaccuracy induced by local sin-
gularities. Figure 4 shows the convergence of results based on a model containing 30 circular inclusions, each with
a radius of 0.5. Thex-axis is the total number of elements in the model, and they-axis represents the average nodal
temperature at the top of the model. In the simulation, we choose a mesh quality of∼ 0.4 with ∼ 6000 to 8000
elements for the model of circular inclusions and 13,000 to 20,000 elements for the model of elliptical inclusions.
Each simulation deviates from the convergent result with an error of< 0.5%. Mesh data such as nodal positions and
element compositions are contained in an ABAQUS© (Dassault Systèmes Simulia Corp., Rhode Island) script file. To
maintain consistency with parameters used in the random walk model, we set the matrix diffusion coefficient in the
FEA (Km) to 2.5344× 10−5 s−1 and the thermal coefficient of inclusionsKf to 0. For convenience, the density and
specific heat of the matrix are set to 1. A unit temperature was defined on the bottom of the domain, and the remain-
ing three sides are insulated. No kinetic degrees of freedom are present in the elements, and the temperature is the
only remaining degree of freedom. Thermal conduction occurs due to the temperature gradient, and the steady-state
solution was sought from the Laplace equation. We compute the average temperature at the top of the unit square.
Because diffusion transfer and heat transfer have the same governing equation, we use average node temperature to
represent concentration of mass in the model.

2.3.2 Finite Element Model

We use ABAQUS to analyze the transient heat transfer process in the model. We study circular and elliptical inclu-
sions, and all inclusions are the same size. Figure 5(a) shows the finite element mesh for the model of 30 circular
inclusions, each with a radius of 0.5. The number of triangular elements in the model is 6353. Figure 5(b) shows
an example of randomly distributed elliptical inclusions with 14,132 elements. Semimajor axis length is 0.6 and
semiminor axis length 0.3.

FIG. 5: Finite element model of (a) circular voids randomly distributed in the plate with a 23.56% volume fraction and (b) elliptical
voids randomly distributed in the plate with a 17.67% volume fraction
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3. RESULTS AND DISCUSSION

3.1 MSD

To measure MSD of circular and elliptical void models, we started with ordinary diffusion inside a simulation box of
unit width surrounded by rigid walls. According to Eq. (5), the diffusion coefficient of the system is a linear function
of diffusion time with constant step size. Because fixed step lengthl and step timeτ can determine the diffusion
coefficient of the matrixDm, as discussed in Eqs. (2)–(5), the only variable that can affect the effective diffusion
coefficient is the volume fraction of impermeable inclusions in the entire system. We varied the volume fraction of
inclusions from 0.1 to 0.5, with a fixed step sizel = 0.001 and step timeτ = 1 s. We ran the simulation 1000 times
every 50 s and measured MSD at each time interval. We examined both types of inclusions (ellipses and circles).
Collected data were analyzed based on the curve-fitting technique. Figure 6 shows MSD for the elliptical model as a
function of observation timet for three different volume fractions (Vf = 0.1, 0.3, and 0.5). The aspect ratio (major
axis length to minor axis length) of elliptical voids was 2. Diffusion time ranged from 0 to 50,000 s. The variance of
MSD initially follows the behavior of normal diffusion, such that MSD increases in proportion tot, following Eq. (5).
After a long period of time, MSDs approach a constant value. MSD saturates, and because of the confinement in the
box, we only measured the linear parts of the curves and found the effective diffusion coefficient of the systems. In
Fig. 6, the red lines show curve-fitting results using linear least-squares regression.

3.2 Comparisons between FEA and Random Walk

To verify the random walk simulations, we used two different volume fractions of voids in the system, with the radius
of inclusionsr = 0.02. The higher-volume fraction of voids is 0.5, and the lower fraction is 0.2. We fixed step size
at l = 0.001 and ran the simulation 1000 times at each time interval. Diffusion time ranged from 0 to 5000, with a
constant time intervalt0 = 100 s. We measured the number of molecules that moved out of the system and calculated
the mass concentration at the top of the square. According to mass transfer theory, the molecules that moved out of
the system were equivalent to the mass concentration. We then used the same parameters to create a random system
and measured the temperature in the finite element model. Because heat transfer and mass transfer have the same

FIG. 6: MSD of random walks averaged from 1000 simulations, with different volume fractions of elliptical voids ranging from
0.1 to 0.5. Slopes of regression lines are 2.2817× 10−5 s−1 for vf = 0.1, 1.8722× 10−5 s−1 for vf = 0.3, and 1.4847× 10−5

s−1 for vf = 0.5.
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governing equation, the results are analogous under the same conditions. We ran 20 simulations at each time interval.
Figure 7(a) shows results for both random walk and finite element models. Squares and circles represent average
temperature and concentration of mass at the end of the simulation, respectively. Red and blue lines represent curve-
fitting results. We obtained very close results from both methods: The difference between the two results was< 2.
The findings imply that under the same conditions, both methods apply to systems using a wide range of volume
fractions.

3.3 Elliptical Voids

To investigate the effective diffusion coefficient of the elliptical inclusions composite, we fixed parameters ata = 0.1
andb = 0.05, with total volume fraction of the inclusions at 0.2 and 0.5. Random walk step sizel = 0.001, and
time stepτ = 1 s. Diffusion time ranged from 0 to 5000 s, with a constant time intervalt0 = 100 s. At each time
interval, we ran the simulation 1000 times and measured the concentration of mass at the top surface of the model.
For FEA, we ran the simulation 20 times at each time interval, using the same conditions as those in the random
walk. Figure 7(b) shows FEA and random walk results from the system of elliptical inclusions. Circles and squares
represent simulation results from FEA and random walk, respectively. The red and and blue lines show curve-fitting
results. Mass concentration increased with time and reached a constant value after a sufficiently long simulation. The
difference between these two methods was 0.2%. According to Figs. 7(a) and 7(b), we found our algorithm to be
effective for both elliptical and circular inclusions and confirmed that heat and mass transfers behave similarly in
composite materials.

A more indicative view of these two phenomena can be observed in Fig. 8, which shows a comparison between
ABAQUS analysis and random walk simulation. In Figs. 8(a) and 8(b), we used the same number, sizes, and orien-
tations of elliptical inclusions and found good agreement between the two methods. Figure 8(a) shows temperature
distribution from FEA. Because the model contains impermeable random inclusions, the temperature gradient was
not uniformly distributed. We also found that the temperatures were greater in those locations with higher concentra-
tions of inclusions. This is because impermeable inclusions block the pathway of heat flow in the congregating area,
leading to localized high temperatures. Figure 8(b) shows the distribution of equivalent mass concentration based on
the random walk model. The darker red area in Fig. 8(b) represents a higher mass concentration, whereas the darker
blue area shows a smaller mass concentration.

FIG. 7: Comparison of concentration ratio between FEA and random walk method for (a) circular voids with volume fractions
between 0.2 and 0.5; (b) elliptical voids with volume fractions between 0.2 and 0.5

Volume 16, Issue 2, 2018



140 Qiu & Yi

FIG. 8: (a) Temperature distribution obtained from FEA; (b) simulated mass concentration using the random walk model

3.4 Aspect Ratio Effect

It is well known that inclusions of large aspect ratios can significantly affect the diffusion coefficient. We investigated
the effective diffusion coefficient by comparing elliptical and circular inclusions at the same volume fractions using
the random walk model. In the circular inclusion system, we fixed the radius atr = 0.1, and in the elliptical inclu-
sions system, we varied the aspect ratioa/b from 0.1 to 0.5, wherea is the semimajor axis andb the semiminor axis.
We varied the volume fraction from 0.1 to 0.5 and measured the concentration of mass at different time intervals.
Figure 9(a) shows a comparison of concentration ratios between elliptical and circular inclusions at different volume
fractions. Solid and dotted lines represent curve-fitting results for circular and elliptical inclusions, respectively. At a
lower-volume fraction, the aspect ratio of inclusions has an insignificant effect on the diffusion coefficient. However,
when the volume fraction increases to a higher value, such as 0.3 or 0.5, elliptical inclusions have a smaller concen-
tration, that is, a lower effective diffusion coefficient as compared to the circular system. This is because at a lower
volume fraction, the system has enough space for the molecules to move and diffuse. When the number of inclusions

(a) (b)

FIG. 9: (a) Effect of aspect ratio on the concentration ratio for different volume fractions; (b) comparison of dimensionless
effective diffusion coefficient between analytical solutions and computer simulations for randomly distributed voids with different
aspect ratios. (Solid line) Circular voids; (dashed line) elliptical voids with aspect ratios of 3 and 5.
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increases, molecules hit the inclusions more frequently. The molecules tend to be “trapped” in the vicinity of higher
aspect ratio inclusions, and it takes longer for a molecule to “escape” the region. Figure 9(b) shows a comparison
between the generally accepted MG solution and computer simulations for randomly distributed inclusions in terms
of the dimensionless diffusion coefficient. Squares and stars are simulation results with different aspect ratios, and
triangles and circles are analytical results with different volume fractions of inclusions. The immediate conclusion
that may be drawn from Fig. 9(b) is that the effective diffusion coefficient decreases with the volume fraction of inclu-
sions. A lower-volume fraction of inclusions slightly affects the effective diffusion coefficient of the system, where
vf = 0.1 and 0.2. However, at a volume fraction as high asvf = 0.3 or 0.5, the effective diffusion coefficient signif-
icantly decreases. Compared to simulation results, the decreasing rate of the effective diffusion coefficient does not
change, because the analytical solution does not consider that the molecule can collide more frequently in a localized
region with inclusions of higher aspect ratio. It should be pointed out here that the MG equation and BEM approx-
imation yield rather inaccurate results, especially at higher-volume fractions, because they (1) neglect the different
concentrations in the inclusions and the matrix and (2) cannot precisely predict the effective diffusion coefficient at a
high-volume fraction.

4. CONCLUSIONS

In this research, we developed an efficient random walk algorithm that describes the motion of molecules in a 2D het-
erogeneous medium with both circular and elliptical inclusions. The main advantage of this algorithm is its simplicity
and computational efficiency in comparison to the FEM. In addition, it accurately simulates the Brownian motion
of molecules in a random particulate system, even when the system has a high-volume fraction of inclusions. Our
random walk simulation results agree very well with the FEM for both circular and elliptical systems. At a lower-
volume fraction, for example, at 10%, random walk results also agree with analytical solutions. However, when the
volume fraction is sufficiently high, for example, greater than 30%, there is an apparent discrepancy between simu-
lation results and the analytical solution, mainly because all of the effective medium approximations can only deal
with lower-volume fraction systems. At higher-volume fractions, the geometric shape of inclusions has an important
role in the effective diffusion coefficient. A higher aspect ratio of impenetrable inclusions can reduce the speed of
diffusion, because it increases the probability of collision between the molecules and solid interfaces.
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