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A new anisotropic size-broadening model based on a spherical-harmonics

representation allowing determination of both volume- and area-averaged

apparent crystallites and convenient for implementation into Rietveld programs

is described. The model effectiveness is demonstrated on a ZnO powder pattern

exhibiting strongly anisotropic size broadening and pronounced super-

Lorentzian peak shapes. Moreover, it is shown how the apparent crystallites

can be interpreted in terms of physical models by using ellipsoidal and

cylindrical crystallites with lognormal size distributions. This interpretation is

critically assessed and it is argued that both simplified physical models and

a priori complementary information (obtained by transmission electron

microscopy, for instance) are often needed to avoid unstable and non-unique

solutions.

1. Introduction

It was recognized early on (Scherrer, 1918) that the small size

of crystallites leads to broadening of line profiles in powder

diffraction patterns. Line-broadening analysis became more

sophisticated with the advent of Fourier (Bertaut, 1949;

Warren & Averbach, 1950) and variance (Wilson, 1962)

methods. As much as the anisotropy of size broadening was

treated in several early theoretical papers (Wilson, 1969;

Langford & Louër, 1982; Vargas et al., 1983) and applications

(Louër et al., 1972, 1983; Langford et al., 1993), the modeling

of anisotropy was particularly advanced with the introduction

of size-broadening models in Rietveld refinement programs.

Two models of size-broadening anisotropy are currently

used in Rietveld programs. A model of infinite plates and

needles, originally proposed by Greaves (1985), is imple-

mented in GSAS (Larson & Von Dreele, 1986). The crystal

rotation axis is normal to the plate or parallel to the needle

axis. The breadth of the diffraction peak then depends only on

the angle between this axis and the scattering vector. There is

no broadening effect in the plane of the plate or along the

needle axis. No size distribution is considered; consequently

the model has only one refinable parameter, the plate thick-

ness or the needle diameter.

The second model of size-broadening anisotropy imple-

mented in Rietveld codes is the phenomenological model of

spherical harmonics proposed by Popa (1998). It was imple-

mented in the Rietveld program MAUD (Lutterotti, 1997)

and applied by Lutterotti et al. (1999) to determine the

apparent anisotropic crystallite of chromium oxide from the

Rietveld refinement of an X-ray diffraction pattern. Later the

model was implemented in FULLPROF by Rodriguez-

Carvajal (2001). Using FULLPROF, Casas-Cabanas et al.

(2005) have recently interpreted the anisotropic line broad-

ening in the patterns of four samples of nickel hydroxide as an

alternative solution to anisotropic broadening caused by

stacking faults.

The model of spherical harmonics proposed by Popa (1998)

is based on the observation that the volume-averaged column

length in the Scherrer (1918) formula, DVðhÞ, is invariant to
the Laue group operations, and therefore can be expanded in

a series of symmetrized spherical harmonics of polar and

azimuthal angles of h, the unit vector along the reciprocal

lattice vector H. The spherical harmonics coefficients are

refined in whole pattern fitting. The size-broadened peak

shape was considered Lorentzian.

The spherical harmonics model has two important limita-

tions. Firstly, no size distribution was considered, meaning that

only the volume-averaged apparent crystallite size is deter-

mined. Secondly, as reported by Langford et al. (2000) and

Popa & Balzar (2002) by analysis of ceria samples containing

a size distribution of spherical crystallites, the Lorentzian

is in general an unsatisfactory approximation for the size-

broadened peak profile. Consequently, the model must be

improved by using a better approximation for the size-

broadened peak profile and allowing the determination of
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both volume- and area-averaged apparent crystallites. This

improvement is presented in the next section. In x3 the

improved spherical harmonic model is used to fit a difficult

X-ray diffraction pattern measured on a sample of zinc oxide.

Finally, in x4, we show how the apparent crystallites deter-

mined by the whole powder pattern fitting (WPPF) using

spherical harmonics can be interpreted in terms of some

physical models by using ellipsoidal and cylindrical crystallites

with lognormal size distributions.

2. Improving the model of spherical harmonics

The improved spherical harmonics model is achieved by

including anisotropy in the model of spherical crystallites with

lognormal size distribution.

In the past decade the model of spherical crystallites with

lognormal size distribution has been the object of a number of

publications. Krill & Birringer (1998) proposed to calculate

the parameters of distribution, the mean radius �RR and the

dispersion �2, by using the volume- and area-averaged column

lengths determined from the Fourier coefficients of the

diffraction peak obtained after Stokes deconvolution and

separation of the strain contribution by the Warren–Averbach

(Warren & Averbach, 1952) method. Ungár et al. (2001) also

used the Fourier-space approach via the least-squares fitting

of the analytical expressions containing both strain and size

distribution parameters. Fourier analysis, in general, requires

no peak overlap, a condition that is normally not fulfilled in

diffraction patterns of nanocrystallite samples. In this case, a

much more appropriate method to determine the size distri-

bution parameters is whole powder pattern fitting (including

Rietveld refinement). This method was first applied by

Langford et al. (2000) to the X-ray diffraction pattern of a

cerium oxide sample, assuming normal and lognormal size

distributions. For both distributions the peak profile cannot be

expressed by elementary functions; therefore, the authors

calculated the profile by a numerical quadrature, which is a

time-consuming process and thus not preferred for imple-

mentation in existing Rietveld codes. The authors observed

that not only the peak breadth but also the peak shape

depends on the distribution dispersion. As a quantitative

measure, they defined the peak shape parameter ’ by the ratio
between the full width at half-maximum and the integral

breadth. From the dependence of ’ on the ratio �= �RR the

authors concluded that ‘for a narrow distribution of size, the

line-profile shape is intermediate between Lorentzian and

Gaussian, and that it tends to become more Lorentzian in

character as �= �RR increases’ (see Fig. 2 of their paper).

Concerning the super-Lorentzian line profiles sometimes

reported, it is considered that such an effect can arise when

there is a bimodal distribution of size (Young & Sakthivel,

1988). Popa & Balzar (2002) also adopted whole pattern fitting

to determine the parameters of the size distributions of

spherical crystallites. Two distributions were considered,

lognormal and gamma. To parametrize the distributions, the

mean radius �RR and, in place of the dispersion �2, the relative

dispersion c ¼ �2= �RR
2

were used. In this way, the size-

broadened peak shape depends only on c, and not on both �2

and �RR. The peak shape can be calculated only by numerical

quadrature; this method requires a large number of nodes,1

which makes it prohibitive for implementation in Rietveld

codes because of time considerations. Fortunately, the

dependence of the size-broadened peak shape on only one

parameter makes finding an analytical approximation

possible. For the gamma distribution, c is physically limited to

the range (0, 1) and the peak shape is very well approximated

by a pseudo-Voigt function. For the lognormal distribution, c

is in principle unlimited, but the authors searched for an

approximation in the range (0, 6), which covers most of the

situations found in practice; by comparison, Langford et al.

(2000) considered only the range (0, 0.25). In this extended

range the size-broadened peak shape was approximated by a

sum of two or three Gauss and/or Lorentz functions (see

Appendix A). This approximation makes the implementation

in existing Rietveld codes simple. Indeed, the strain-

broadened and instrumental peak profiles for most diffract-

ometers can be described by Gauss, Lorentz, pseudo-Voigt,

Voigt or linear combinations of these functions. Consequently,

the convolution of all broadening effects can be performed

analytically, resulting in a sum of Voigt2 functions. The authors

used this approach to fit the patterns of two cerium oxide

samples, one of them exhibiting super-Lorentzian peak

profiles. The authors also calculated the peak shape para-

meters ’ as a function of c for both distributions. These are

given in Fig. 2 of Popa & Balzar (2002). For the lognormal

distribution the curve ’ðcÞ crosses the Lorentzian limit

’ ¼ 0:6466 at c ’ 0:5, decreasing to ’ ¼ 0:2856 when c ¼ 6.

Therefore, for spherical crystallites with lognormal size

distribution and c> 0:5, the peak shape is super-Lorentzian,

and this character increases with increasing c. On the other

hand, in the range c 2 ð0; 0:4Þ the shape is well approximated

by a pseudo-Voigt function (see Appendix A). For c ¼ 0 the

weight of the Gaussian component is equal to 0.75, but it is

only 0.12 for c ¼ 0:4. It can be concluded that the model of

spherical crystallites with lognormal size distribution exhibits

a wide variety of peak profiles, from near Gaussian profiles at

small values of c, passing through near Lorentzian profiles, up

to super-Lorentzian profiles with very sharp peak maxima and

very long tails for large c.

This flexibility in the size-broadened line profile makes the

model of spherical crystallites with lognormal size distribution

a very convenient model to extend to the general anisotropic

case. The distribution parameters �RR and c are replaced by

functions dependent on direction, �RRh and ch, and then the size-

broadened peak profile and the volume- and area-averaged

column lengths [equations (15a), (12) and (13) of Popa &

Balzar (2002)] become3
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1 The interference function is ‘difficult’ to integrate because the higher-order
derivatives have a strongly oscillatory behavior. Consequently, to reach a
given accuracy in a Gauss quadrature, a large number of nodes are necessary.
2 Usually, to speed up the calculations in the Rietveld codes, the Voigt function
is replaced by a pseudo-Voigt one (Thompson et al., 1987).
3 The replacement is also performed in the Fourier transform of the peak
profile [equation (14) of Popa & Balzar (2002)], but we do not give the
expression for �  ðr; hÞ because it is not used in this paper.
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�PPðs; hÞ ¼ ð3 �RRh=2Þð1þ chÞ3 ���ð2�s �RRh; chÞ; s ¼ 2 sin �=�� 1=d;

ð1Þ

DVðhÞ ¼ �PPð0; hÞ ¼ ð3 �RRh=2Þð1þ chÞ3; ð2Þ

DAðhÞ ¼ �1= �  0ð0; hÞ ¼ ð4 �RRh=3Þð1þ chÞ2: ð3Þ
The exact expression and the analytical approximation of

the function ���ðx; cÞ from equation (1) are reproduced in

Appendix A. Concerning �RRh and ch, the unique necessary

condition for these functions is to be invariant to the Laue

group operations. Consequently, they can be expanded in

series of symmetrized spherical harmonics:

�RRh ¼
P1
l¼0

P
m2½0; l�

Rm
l K

m
l ð�; �Þ; ð4Þ

ch ¼
P1
l¼0

P
m2½0; l�

cml K
m
l ð�; �Þ: ð5Þ

In these equations, Rm
l and cml are refinable parameters in the

whole pattern fitting and Km
l ð�; �Þ are the symmetrized

spherical harmonics, � and � being the polar and azimuthal

angles of h in a crystal orthogonal coordinate system. The

symmetrized spherical harmonics for any Laue group are

given by Popa (1992).

If the ‘source’ model of spherical crystallites with lognormal

size distribution is a physical one, the previously described

extension to anisotropy is purely phenomenological. This does

not mean that the size distribution along h is lognormal with

parameters �RRh and ch, but that the peak profile in this direc-

tion as well as its Fourier transform are close to those

produced by spherical crystallites with such a distribution.

Although the new model of spherical harmonics is, like the old

model, a phenomenological one, it has by comparison three

major advantages: (i) it describes the dependence on h not

only of the peak breadth but also of the peak shape; (ii) it

allows the determination of both volume- and area-averaged

apparent crystallites; (iii) it can fit patterns exhibiting super-

Lorentzian peak shapes.

The implementation of the improved model of spherical

harmonics in the whole pattern fitting codes is identical to

those of its source model, except for the number of refinable

size parameters, unknown beforehand for the former. This

number is determined by successive refinements, starting from

the isotropic state and adding terms one by one to the series

[equations (4) and (5)] until the reliability factors show no

further significant improvement. Care must be taken

concerning the series truncation because introduction of

additional unneeded terms may produce ripples in the

apparent crystallites determined from the fit.

In the next section we use the improved spherical harmonic

model to fit, using the Pawley (1981) method, an X-ray

diffraction pattern measured on a sample of zinc oxide. It is a

difficult pattern, exhibiting a strong anisotropic size-broad-

ening effect and strongly overlapped peaks of super-Lorent-

zian shapes. Moreover, a small but also anisotropic strain-

broadening effect is detected.

3. Application of the improved model to an X-ray
pattern of zinc oxide

3.1. Sample preparation and diffraction data collection

The ZnO powder was obtained by the thermal decom-

position (in vacuum at 553 K) of zinc hydroxide nitrate,

Zn3(OH)4(NO3)2. To obtain minimal strain, small masses of

the precursor were used (see Auffrédic & Louër, 1987).

Powder data were collected with a D500 Siemens high-

resolution powder diffractometer with a Bragg–Brentano

geometry and monochromatic Cu K�1 radiation (see Louër

& Langford, 1988). The ZnO powder was deposited on an

oriented Si crystal plate with low background. The diffraction

pattern was scanned over the range 20–150� in 2�, with a step

of 0.02� and a counting time of 80 s per step. The NIST

standard reference material SRM 660a LaB6 was used to

characterize the instrumental function. In the range 20–150� in
2�, diffraction data for LaB6 were collected only in 18 short

segments around each peak. Depending on the peak breadth

and peak intensity, these segments were scanned with a step

length of between 0.006 and 0.02� (�FWHM/10), and the scan

ranges (20–30 � FWHM) were roughly constant on a d�1

scale. The counting time per step was between 40 and 180 s.

All ranges can be put in a single pattern by normalizing to unit

time both the intensities and the standard uncertainties.

3.2. Fitting LaB6 data

To find the analytical representation of the instrumental

profiles from LaB6 data, three types of fits were necessary. A

preliminary data analysis including the peak asymmetry

showed that the asymmetry parameter is significant only for

the first peak, (100) at 2� ’ 21:36�, whereas the rest, begin-

ning with (110) at 2� ’ 30:38�, are perfectly symmetrical.

Fortunately, the first peak in the ZnO pattern is at 2� ’ 31:77�,
which allowed us to exclude the (100) peak of LaB6 from the

subsequent analysis. For the other peaks, the measured data

in each range were fitted by a Voigt function plus a linear

background. There are six fitting parameters for a range: two

parameters for background, the peak area sH, the peak posi-

tion 2�m, and the integral breadths of the Gaussian and

Lorentzian components of the Voigt function, �IG and �IL,
respectively. The index I here denotes an instrumental profile.

In the second step the values of the peak positions and of the

integral breadths determined from the single peak fits were

used in a least-squares fitting program to find their analytical

dependence on the Bragg angle, �H ¼ arcsinð�=2dHÞ. For the
peak position we have found the following expression:

2�mð�HÞ ¼ ð180=�Þ 2�H þ �0 þ �1 cot �H þ �2 sin 2�H: ð6Þ

Here the last three terms represent the diffractometer zero,

flat specimen and sample transparency peak shifts. For the

integral breadths of the Voigt function components the best

fits were obtained with the following polynomials in tan �H:

�IGð�HÞ ¼ �g0 þ �g1 tan �H þ �g2 tan2 �H þ �g3 tan3 �H; ð7Þ
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�ILð�HÞ ¼ �l1 tan �H þ �l2 tan2 �H þ �l3 tan3 �H þ �l4 tan4 �H:
ð8Þ

In the third step a Pawley-type whole powder pattern fitting

was performed with the following calculated intensity:

Ið2�Þ ¼ Bð2�Þ þP
H

sH Vð2� � 2�m; �IG; �ILÞ: ð9Þ

Here V is the Voigt function (normalized to unit area) and

Bð2�Þ is the background, for which we used a five-degree

polynomial in 2�. There are 35 refined parameters, but only �gi
(i = 0, 1, 2, 3) and �li (i = 1, 2, 3, 4) from equations (7) and (8)

are important for the next section. These are given in Table 1,

together with the reliability factors of the fit. The integral

breadths �IG and �IL calculated with these parameters are

shown in Fig. 1, together with the Voigt integral breadth

�I ¼ ��1
IG expðr2Þ erfcðrÞ, where r ¼ �IL=�IG�

1=2. This variation

of Voigt integral breadths with tan� is comparable to that

reported for the BaF2 standard material with the same

instrument (Fig. 7 in Louër & Langford, 1988). Finally, zooms

on three peaks from the LaB6 diffraction pattern fitted by

equation (9) are shown in Fig. 2.

3.3. The Pawley fit of the zinc oxide pattern

For the angular dispersive diffraction method we must set

s ¼ ðcos �H=�Þ�2� in equation (1). Considering for ��� the

analytical approximation (30), the peak profile �PPHð�2�Þ ¼

�PPðs; hÞj ds=dð�2�Þj will be a sum of two or three Gauss and/or

Lorentz functions with the following integral breadths:

�Sjð�HÞ ¼ ð180=�Þ �=½4 �RRh cos �H �jðchÞ� ð j ¼ 1; 3Þ: ð10Þ

In this equation the index S denotes a size quantity and the

functions �jðchÞ are given in Appendix A. Concerning the

strain effect, according to Popa (1998), the contribution to the

integral breadth of the peak profile is
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Table 1
The instrumental breadth parameters in equations (7) and (8) refined by
the Pawley fit of the LaB6 diffraction pattern; the reliability factors are
included.

i 102 �gi 102 �li

0 5.94 (3) –
1 0.88 (12) 1.05 (8)
2 0.48 (13) 3.12 (19)
3 �0.20 (3) �0.68 (11)
4 – 0.06 (2)

Rp ¼ 3:86% Rwp ¼ 5:30%

Figure 1
Instrumental integral breadths �IG, �IL and �I versus tan �H obtained
from the Pawley fit with equation (9) of an LaB6 diffraction pattern in the
range 30 � 2�H � 150�.

Figure 2
Pawley fits with Voigt profiles of the LaB6 diffraction pattern: zooms in an
angular range of 0.6� on three peaks, at small (a), medium (b) and high (c)
scattering angles.
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�Eð�HÞ ¼ ð180=�Þ 2 tan �H ð2�h"2hiÞ1=2: ð11Þ

Here h"2hi is the dispersion of the strain distribution, consid-

ered to be Gaussian. As the instrumental profile is a Voigt

function, the calculated intensity used in the Pawley fitting of

the zinc oxide pattern is the following:

Ið2�Þ ¼ Bð2�Þ þP
H

sH
P3
j¼1

�jðchÞVð2� � 2�m; �Gj; �LjÞ: ð12Þ

For background we used a six-degree polynomial in 2�, the
functions �jðchÞ can be found in Appendix A, 2�m is given by

equation (6), and �Gj and �Lj are calculated from equations

(7), (8), (10) and (11) as follows:

�Gjð�HÞ ¼ �2IG þ �2E
� �1=2 ð j ¼ 1; 2Þ;

�Ljð�HÞ ¼ �IL þ �Sj ð j ¼ 1; 2Þ;

�G3ð�HÞ ¼
(
ð�2IG þ �2E þ �2S3Þ1=2 if 0 � ch � 1

ð�2IG þ �2EÞ1=2 if 1 � ch;

�L3ð�HÞ ¼
(
�IL if 0 � ch � 1

�IL þ �S3 if 1 � ch:

The Laue group of zinc oxide is 6=mmm; then, according to

Popa (1998), equations (4) and (5) become

�RRh ¼R0
0 P

0
0ð�Þ þ R0

2 P
0
2ð�Þ þ R0

4 P
0
4ð�Þ þ R0

6 P
0
6ð�Þ

þ R6
6P

6
6ð�Þ cos 6�þ � � � ; ð13Þ

ch ¼ c00 P
0
0ð�Þ þ c02 P

0
2ð�Þ þ c04 P

0
4ð�Þ þ c06 P

0
6ð�Þ

þ c66 P
6
6ð�Þ cos 6�þ � � � : ð14Þ

In these equations Pm
l ð�Þ are normalized Legendre functions.

According to the same paper the strain dispersion h"2hi can be

written by using quartic forms in h; k; l, invariant to the Laue

group operations. Alternatively, we can use linear combina-

tions of symmetrized homogenous polynomials of the fourth

degree in a1; a2; a3, the direction cosines of h in the crystal

orthogonal coordinate system.4 For the Laue group 6=mmm

we have

h"2hi ¼ E1ða21 þ a22Þ2 þ E2a
4
3 þ 2E3ða21 þ a22Þa23: ð15Þ

The direction cosines a1; a2; a3 as well as the polar and

azimuthal angles � and � of h can be calculated from the

Miller indices and the lattice constants. The crystal orthogonal

coordinate system is defined by x3 ¼ c=c, x1 ¼ a=a, x2 ¼
x3 � x1, and then we have

a1 ¼ sin� cos � ¼ h dH=a;

a2 ¼ sin� sin � ¼ ðhþ 2kÞ dH=ð31=2aÞ;

a3 ¼ cos� ¼ l dH=c:

The size–strain broadening parameters Rm
l , cml and Ei in

equations (13), (14) and (15) obtained by fitting equation (12)

with the measured pattern of zinc oxide are given in Table 2,

together with the reliability factors of the fit. The fitted pattern

is shown in Fig. 3. The logarithmic scale for intensity in this

figure emphasizes how strongly the peaks are overlapped.

Zooms on four peaks in identical angular intervals are given in

Fig. 4. Large differences in breadths are evident. The para-

meters of the ‘equivalent’ lognormal distributions of spherical

crystallites �RRh and ch, the volume- and area-averaged column

lengthsDVðhÞ andDAðhÞ, and the strain h"2hi1=2 calculated with
equations (13), (14), (2), (3) and (15) from the refined size–
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Table 2
The size parameters Rm

l and cml and the strain parameters Ei refined by
the Pawley fit of the zinc oxide diffraction pattern; the reliability factors
are included.

Rm
l cml Ei; Rp; Rwp

R0
0 ¼ 23:53 ð13Þ c00 ¼ 1:826 ð11Þ E1 ¼ 0:0208 ð2Þ

R0
2 ¼ �11:56 ð11Þ c02 ¼ 0:917 ð15Þ E2 ¼ 0:0058 ð7Þ

R0
4 ¼ 3:52 ð3Þ c04 ¼ 0:162 ð5Þ E3 ¼ 0

R0
6 ¼ 0 c06 ¼ 0 Rp ¼ 4:77%

R6
6 ¼ �7:70 ð15Þ c66 ¼ 0:121 ð4Þ Rwp ¼ 6:46%

Figure 3
Pawley fits of the ZnO diffraction pattern: (a) the range (20�, 85�), (b) the
range (85�, 150�).

4 The complete sets of homogenous polynomials of two, four and six degrees in
a1; a2; a3, symmetrized for all Laue groups, are given by Popa & Balzar (2001).
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strain parameters are given in Table 3 as a function of hkl.

Three things follow from this table: (i) the values of ch are

always greater than 0.5, which means that all peaks are super-

Lorentzian; (ii) the averaged column lengths are strongly

anisotropic, the ratio between the maximum and minimum

values being 3.45 for DV and 1.94 for DA; (iii) the strain is

small (h"2i1=2max ¼ 5:02� 10�4) and anisotropic. Finally, in

Figs. 5(a) and 5(b) are given the cross sections of the volume-

and area-averaged apparent crystallites within the ab and ac

planes, respectively. The peculiarities of these cross sections

will be discussed later in x4.4.

4. Interpretation of the apparent crystallites in terms of
‘physical’ models

Most users of the Rietveld programs are interested in struc-

ture refinement and for these users phenomenological models

for microstructure that achieve a good pattern fit are suffi-

cient. However, if one wants to know more detailed micro-

structural information besides features of the apparent

crystallites, the shape (morphology), orientation and size

distributions of the real crystallites need to be determined. It
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Figure 4
Zooms in an angular interval of 2� of four peaks from the fitted ZnO pattern: (a) (100), (b) (002), (c) (101) and (d ) (103).

Table 3
The volume- and area-averaged column lengths (Å) and the micro-strain
as a function of ðhklÞ (higher orders excluded).
The parameters of the ‘equivalent’ lognormal distributions of spherical
crystallites are given in columns 3 and 4.

hkl �RRh ch DVðhÞ DAðhÞ 104h"2hi1=2

1 100 37.90 0.5489 211 (6) 121 (3) 5.02 (3)
2 002 5.82 3.0862 596 (24) 130 (5) 2.66 (16)
3 101 22.04 0.9043 228 (4) 107 (1) 3.93 (2)
4 102 9.11 1.5949 239 (4) 82 (1) 2.72 (5)
5 110 19.25 0.8424 181 (5) 87 (2) 5.02 (3)
6 103 5.76 2.1236 264 (8) 75 (2) 2.37 (9)
8 112 12.13 1.1164 173 (3) 72 (1) 3.69 (2)
9 201 32.50 0.6439 217 (5) 117 (2) 4.68 (2)
12 104 5.14 2.4453 315 (11) 81 (3) 2.36 (12)
13 203 13.78 1.2508 236 (4) 93 (1) 3.21 (3)
14 210 24.69 0.7569 201 (5) 102 (2) 5.02 (3)
15 211 22.97 0.7876 197 (5) 98 (2) 4.82 (2)
16 114 6.38 1.8016 210 (5) 67 (1) 2.54 (6)
17 212 18.87 0.8913 192 (3) 90 (1) 4.32 (2)
18 105 5.12 2.6384 370 (14) 90 (3) 2.41 (13)
21 213 14.38 1.0727 192 (3) 82 (1) 3.72 (2)
22 302 29.10 0.7153 220 (5) 114 (2) 4.45 (2)
24 205 6.82 1.8891 247 (6) 76 (2) 2.47 (7)
25 106 5.21 2.7590 415 (16) 98 (4) 2.47 (14)
26 214 10.78 1.3041 198 (3) 76 (1) 3.19 (3)
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should be outlined that, in principle, the diffraction pattern

does not contain enough information to determine these

microstructure details unequivocally. Diffraction line-broad-

ening analysis yields only the parameters of an a priori

physically based crystallite size model. This seems to be a

simple task at first sight. Starting from a given model for

crystallite shape, orientation and size distributions, one

calculates the peak profiles for the apparent crystallites. Then

the model parameters are found by fitting the calculated

pattern to the measured one or by fitting the calculated

apparent crystallites with those derived from the measured

data (see details in the next section). Both the peak profiles

and the apparent crystallites are integral quantities resulting

from a number of averages, which means that finding the

model parameters involves an inverse problem. If these

problems are ill-posed to a certain degree, then a solution may

not be unique. An example confirming this statement was

reported by Popa & Balzar (2002): two different size distri-

butions of spherical crystallites, lognormal and gamma, with

significantly different mean radii and relative dispersions

produced equally good fits of a cerium oxide pattern and very

similar apparent crystallites. For nonspherical crystallites the

number of model parameters is greater than two, and multiple

solutions may occur not only among different models but also

within a given model. To minimize this occurrence, simple

models are preferable, although they might describe real

crystallites only approximately. It is also very important to use

some a priori information that allows the fixing or constraint

of a number of parameters. Even with these precautions,

additional information obtained by other experimental tech-

niques (such as transmission electron microscopy, TEM) is

necessary to be fully confident in a solution. The diffraction

alone is probably limited to reliably providing only the shapes

and sizes of the apparent crystallites.

It should be mentioned here that there are a few less biased

approaches for line-broadening analysis, such as Fourier

deconvolution followed by the Warren–Averbach (Warren &

Averbach, 1952) method, that yield DVðhÞ and DAðhÞ, as well
as both the column length and crystallite size distribution,

without a priori assuming a model for the crystallite size

distribution. Moreover, Leoni & Scardi (2004) demonstrated

the whole powder pattern modeling (WPPM) approach

without assuming an a priori model for the crystallite size

distribution. However, if the parameters of the physical crys-

tallite size distribution are to be determined, these approaches

are difficult to implement, especially for patterns with signif-

icant peak overlap, and give uncertain results owing to

significant error propagation. Krill & Birringer (1998) and

later Langford et al. (2000) followed a different approach by

assuming an a priori lognormal crystallite size distribution. For

spherical crystallites, the size-broadened profile is then

defined by only two parameters of the lognormal crystallite

size distribution: mean radius �RR and the distribution disper-

sion �2 (instead, we use the relative dispersion c ¼ �2= �RR2).

Krill & Birringer (1998) showed that instead of using �RR and c,

DV and DA give an equivalent representation of both the size-

broadened profile and the crystallite size distribution. There-

fore, �RR and c uniquely correspond to DV and DA, which also

uniquely define the whole size-broadened profile. Therefore,

under the same a priori assumption (for instance, a given

crystallite size distribution) and comparable goodness of fit,

both the WPPF and the WPPM approaches should yield

identical results within a single standard uncertainty, as not

only DV and DA but also the peak profile itself are uniquely

defined by the size-distribution parameters. Moreover, as

finding the model parameters involves an inverse problem and

these problems are sometimes ill-posed, a solution may not be

unique in either approach.

Making an assumption on the actual size distribution is

obviously critical. Complementary information obtained by

transmission or scanning electron microscopy or by similar

techniques is always helpful but also can give ambiguous

results, in particular for narrow and symmetric size distribu-

tions. Another size distribution that was considered by several

authors is the gamma distribution. Popa & Balzar (2002)

studied both distributions and concluded that only the

lognormal distribution is able to fit the super-Lorentzian line

profiles that are present in the diffraction patterns discussed

here.
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Figure 5
Two cross sections of the apparent crystallites: (a) in the ab plane
(equatorial) and (b) in the ac plane (vertical). Outer contour: volume-
averaged apparent crystallite; inner contour: area-averaged apparent
crystallite.
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4.1. Fitting averaged column lengths versus whole powder
pattern fitting

There are three possible ways to find the shape, orientation

and size distributions of crystallites, two of them involving

whole powder pattern fitting. Scardi & Leoni (2002, 2006)

recommend the WPPM approach, meaning that the pattern

fitting the diffraction data is calculated exactly starting from

parametrized physical models for all components of the peak

profile. In general, a Rietveld code using this method is time

consuming and not attractive for either the code providers or

most users. In particular, the nonspherical crystallites are

characterized by n> 1 independent parameters with a distri-

bution for each one. The size peak profile results after n

averages over distributions, most of them calculated by

numerical integration, plus one average over the equivalents

of h, which significantly slows down the refinement. The

execution time can be significantly reduced if a hybrid method

is used in place of the whole pattern modeling. This is a whole

pattern fitting with a predetermined profile but with profile

parameters calculated from a physical model. Explicitly, we

can use equation (1) for the size profile,5 but in place of �RRh and

ch we use their expressions derived from equations (2) and (3)

with the column lengths DVðhÞ and DAðhÞ derived from

physical anisotropic size models. In this way the nþ 1

averages discussed previously are transferred from the peak

profile to the profile parameters, thus making the fit signifi-

cantly faster. Nevertheless this fit is slower than those using

spherical harmonics, which require no averaging. Moreover,

one expects any type of whole pattern fitting using models for

crystallite shape to be less successful than those using sphe-

rical harmonics, because these models have an idealized

character. A worse fit means less confidence in other refined

parameters. Therefore, in our opinion, it is preferable to

determine the parameters of a physical anisotropic size model

outside of a whole pattern fitting program, by minimizing the

following function:6

	2 ¼
X
V;A;h

w D
sph
V;AðhÞ �Dcal

V;AðhÞ
� �2

: ð16Þ

Here D
sph
V;AðhÞ are the volume- and area-averaged column

lengths obtained from the whole pattern fitting using the

model of spherical harmonics and Dcal
V;AðhÞ are the column

lengths calculated from physical models. We adopt this

approach in the present paper.

4.2. Calculation of the averaged column lengths: the general

algorithm

Two out of the three approaches to find the shape, orien-

tation and size distributions of crystallites described in the

previous section require the calculation of the averaged

column lengths DVðhÞ and DAðhÞ. Let us denote by S the

vector of n> 1 independent parameters describing non-

spherical crystallites with a given shape. These parameters are

some specific lengths and some angles giving the crystallite

orientation with respect to the crystal orthogonal system

ðx1; x2; x3Þ. In principle each parameter may have a distribu-

tion of values, and in general we must introduce an

n-dimensional distribution function f ðSÞ. Any quantity

depending on the crystallite shape, size and orientation is

calculated by averaging over this distribution.

The calculation of the averaged column lengths is

performed in three steps.

(i) Firstly, we calculate the Fourier transform of the size

profile for a given vector S. For a powder sample it can be

written as follows:

 ðr; hÞ ¼ n�1
h

Xnh
k¼1

(
 0ðr; hkÞ if 0 � r � Rhk

þ R�hk

0 if r 	 Rhk
þ R�hk

:
ð17Þ

In this equation hk is the equivalent k of h, nh is the total

number of equivalents and Rhh
is the crystallite radius along

hk. The function  0ðr; hkÞ is the ratio between the volume

common to the crystallite and its ‘ghost’ displaced at a distance

r in the direction hk and the crystallite volume V. The sum in

equation (17) means the average over equivalents. In practice

only half of the number of equivalents is considered because

 0ðr;�hkÞ ¼  0ðr; hkÞ.
(ii) Secondly, we calculate the derivative of  ðr; hÞ at r ¼ 0

and the height (maximum) of its Fourier transform Pðs; hÞ:

 0ð0; hÞ ¼ n�1
h

Pnh
k¼1

 0
0ð0; hkÞ; ð18Þ

Pð0; hÞ ¼ 2
R1
0

 ðr; hÞ dr ¼ 2n�1
h

Pnh
k¼1

RRhk
þR�hk

0

 0ðr; hkÞ dr: ð19Þ

(iii) Finally, the averaged column lengths are calculated from

equations (18) and (19) as follows:

DAðhÞ ¼ �1= �  0ð0; hÞ ¼ �hVi=hV 0ð0; hÞi; ð20Þ

DVðhÞ ¼ �PPð0; hÞ ¼ hVPð0; hÞi=hVi: ð21Þ
The brackets in these equations denote the following average:

hFi ¼ R
FðSÞ f ðSÞ dS.

4.3. Ellipsoids and elliptical cylinders with multimodal

lognormal distributions and identical shape and orientation

per mode

Both the ellipsoid and the elliptical cylinder are described

by six independent parameters, the principal radii R1, R2 and

R3 (the cylinder height is 2R3), and the Euler angles !, 	
and ’ giving the orientations of the principal axes p1, p2 and

p3 with respect to the crystal orthogonal system: pi ¼P3
j¼1 Eijð!; 	; ’Þ xj. Here E is the Euler matrix. In principle, an

independent distribution can be assigned to each parameter,

but it is advisable to introduce some constraints to obtain

simpler models with a smaller number of fitting parameters.

For the principal radii the distributions can be those

commonly used for spherical crystallites, such as lognormal or
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5 The arguments for using equation (1) for size anisotropy were discussed in
x2.
6 Strictly, a function accounting for the correlations of D

sph
V;AðhÞ should be used

in place of equation (16), but, considering that the inaccuracy caused by the
ideal character of the shape models is probably larger, we can avoid this
complication.
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gamma. However, there is no similar analogy that would help

choose a particular function for the Euler angle distributions.

We know only that these distributions cannot be uniform in

the range of definition: [0; 2�] for ! and ’ and [0; �] for 	;
otherwise the size effect is isotropic even if the crystallites are

not spherical. To have size anisotropy the crystallite shape

orientation must be preferential. In this paper we adopt the

simplest preferential orientation: � functions for the Euler

angle distributions. For the principal radii the lognormal and

gamma distributions have been considered in numerous

publications, and the lognormal was shown to be the most

realistic for modeling the distribution of crystallite sizes (see,

for instance, Langford et al., 2000; Popa & Balzar, 2002). Popa

& Balzar (2002) showed that the gamma distribution cannot

model super-Lorentzian peak profiles. As all peaks in the

pattern of the actual sample of zinc oxide are super-Lorent-

zian we should limit our choice to the lognormal distribution.

To obtain a simpler model we constrain the principal radii to

have constant ratios. With this choice and presuming the

distribution to be multimodal,7 the distribution f ðSÞ can be

written as follows:

f ðSÞ ¼ P
m


m�ð!� �!!mÞ�ð	� �		mÞ�ð’� �’’mÞ
�

��ðR1 � �rrm1R3Þ�ðR2 � �rrm2R3ÞfLðR3; �RRm3; cmÞ
�
: ð22Þ

The index m counts the modes, 
m are the weights of modes

fulfilling the condition
P

m 
m ¼ 1 and fL is the lognormal

distribution:

fLðR; �RR; cÞ ¼ R�1½2� lnð1þ cÞ�1=2 exp � ln2½R �RR�1ð1þ cÞ1=2�
½2 lnð1þ cÞ�

� �
:

Expression (22) describes the simplest model using ellipsoids

or elliptical cylinders and allowing for size distribution: crys-

tallites of identical shape and orientation per mode, differing

from one another only by size. The model fitting parameters

are 
m, �!!m, �		m, �’’m, �rrm1, �rrm2, �RRm3 and cm. Once the model is

defined we can calculate DAðhÞ and DVðhÞ.
4.3.1. Ellipsoids. An ellipsoid can be transformed into a

sphere by a linear scaling of axes. Following this reasoning the

function  0 of a sphere (see e.g. Popa & Balzar, 2002) can be

extended to an ellipsoid by replacing the sphere radius with

the ellipsoid radius. Then we have

 0ðr; hkÞ ¼ 1� 3

2

r

2Rhk

þ 1

2

r

2Rhk

 !3

; 0 � r � 2Rhk
; ð23Þ

R�1
hk

¼ �ðhkp1Þ2=R2
1 þ ðhkp2Þ2=R2

2 þ ðhkp3Þ2=R2
3

�1=2
:

Furthermore we use equations (18), (19), (20) and (21) with

f ðSÞ given by equation (22). For this model the average over S

can be performed analytically and one obtains

DAðhÞ ¼
4

3

P
m


m�rrm1�rrm2
�RR3
m3ð1þ cmÞ3P

m


m�rrm1�rrm2
�RR2
m3ð1þ cmÞn�1

h

P
k

��1
km

; ð24Þ

DVðhÞ ¼
3

2

P
m


m�rrm1�rrm2
�RR4
m3ð1þ cmÞ6n�1

h

P
k

�kmP
m


m�rrm1�rrm2
�RR3
m3ð1þ cmÞ3

; ð25Þ

��1
km ¼ h2km1=�rr

2
m1 þ h2km2=�rr

2
m2 þ h2km3

� �1=2
;

hkmi ¼ hkpmi; pmi ¼
P3
j¼1

Eijð �!!m; �		m; �’’mÞ xj:

4.3.2. Elliptical cylinders. Like the ellipsoid, the ellipse can

be transformed into a circle and then, in a similar manner, the

function  0 of the circular cylinder (see Langford & Louër,

1982) can be extended to the elliptical cylinder:

 0ðr; hkÞ¼ 1� 2

�
arcsin

r

2Rt
hk

 !
� 2

�

r

2Rt
hk

1� r

2Rt
hk

 !2" #1=2
8<
:

9=
;

� 1� r

2Rl
hk

" #
; 0 � r � 2Rhk

; ð26Þ

Rhk
¼ minðRt

hk
;Rl

hk
Þ;

1=Rt
hk
¼ ðhkp1Þ2=R2

1 þ ðhkp2Þ2=R2
2

� �1=2
; 1=Rl

hk
¼ jhkp3j=R3:

Combining equations (18), (19), (20) and (21) one obtains the

following expressions:

DAðhÞ ¼
2
P
m


m�rrm1�rrm2
�RR3
m3ð1þ cmÞ3P

m


m�rrm1�rrm2
�RR2
m3ð1þ cmÞn�1

h

P
k

jhkm3j þ ð4=�Þ��1
km

� � ;
ð27Þ

DVðhÞ ¼
2
P
m


m�rrm1�rrm2
�RR4
m3ð1þ cmÞ6n�1

h

P
k

�kmP
m


m�rrm1�rrm2
�RR3
m3ð1þ cmÞ3

; ð28Þ

��1
km ¼ h2km1=�rr

2
m1 þ h2km2=�rr

2
m2

� �1=2
;

�km ¼ 1=jhkm3j if ��1
km ¼ 0;

�km ¼ 1=jhkm3j � ð4=�Þ�km
�� ð2=3Þ þ ð2=3Þð1� q2kmÞ1=2

þ ð1=3Þq2kmð1� q2kmÞ1=2 þ qkm arcsin qkm
�þ ð1=�Þ�2kmjhkm3j

� �ð1=2Þqkmð1� q2kmÞ1=2 � ð1=2Þ arcsin qkm
þ q3kmð1� q2kmÞ1=2 þ 2q2km arcsin qkm

�
if 0<��1

km< jhkm3j;

qkm ¼ ��1
km=jhkm3j;

�km ¼ ð8=3�Þ�km � ð1=4Þ�2kmjhkm3j if ��1
km 	 jhkm3j:

4.4. Crystallite morphology and size distribution in zinc

oxide

The shapes and sizes of crystallites determined by X-ray

diffraction on a sample of zinc oxide prepared by a method
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7 The need for a multimodal distribution will be explained below.
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similar to those described in x3.1 were reported many years

ago by Louër et al. (1983). In that sample identical apparent

sizes for the peaks (100) and (110) were observed, and the

crystallites were considered cylindrical on average with the

cylinder axis along the sixfold axis. The transmission electron

micrograph showed prismatic crystallites with the cross

sections normal to the sixfold axes of regular or irregular

hexagons. Therefore, the shape of the crystallites is variable

but the sixfold axis is always the prism axis. We consider this

property to also apply to the present sample. The present

sample was synthesized under different conditions and

cylindrical symmetry of the apparent crystallites is missing.

Indeed, we can observe in Table 3 that the averaged column

lengths DV and DA for the peaks (100) and (110) are signifi-

cantly different. Consequently the shape of the crystallites

cannot be approximated by circular cylinders but rather by

elliptical cylinders or by ellipsoids; we can then use the models

developed in x4.3. As a priori information we presume that the

principal axis p3 is parallel to the sixfold axis c. In this case the

Euler angle 	 is zero, and consequently ’ becomes additive to

! and can be taken as zero. The angle ! must have a small

value, if it is not zero. This can be understood by inspecting the

equatorial cross sections of the apparent crystallites from

Fig. 5(a). The contours in this figure are approximately

hexagons with rounded corners and curved concave edges. If

! is zero, such contours can be obtained by superposition of

identical ellipses rotated with respect to one another by 60�.
For large values of ! a splitting of the hexagon corners should

be observed, because both a and b
 are twofold axes. Certainly
the splitting cannot be seen if ! is small. Finally, though both

ellipsoid and elliptical cylinder have convex shapes, concave

segments can also be observed in the contours in the vertical

cross sections in Fig. 5(b). If for the equatorial cross sections

this peculiarity was easy to understand, for the vertical cross

sections it can be explained only if the crystallite distribution

[equation (22)] is bimodal.

The column length data from Table 3 were fitted by mini-

mizing equation (16) with the two models developed in x4.3,
taking into account the constraints discussed previously.

Initially we took �!!1 ¼ �!!2 ¼ 0 with nine parameters remaining

free: �rrm1, �rrm2, �RRm3, cm (m ¼ 1; 2) and 
1. The refinement

resulted in very similar ratios �rr21 and �rr22 and a very small value

for c2, with much larger standard uncertainty. The fit was

repeated setting �rr22 ¼ �rr21 and c2 ¼ 0. Finally, a third fit was

performed with the parameter �!!1 free. As expected, its refined

value was small with larger standard uncertainty and with

practically no change in the other parameters, so we returned

to the second fit. The results of the fits for ellipsoids and

elliptical cylinders are given in Tables 4 and 5, respectively. In

these tables we report the principal diameters in place of the

principal radii and their ratios. The corresponding cross

sections through the apparent crystallites are compared in

Figs. 6 and 7, respectively, with those obtained by whole
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Table 4
The refined principal diameters (Å), relative dispersions, weight
parameter and reliability factors for the simplest ‘physical’ model using
bimodal ellipsoidal crystallite shape and lognormal size distribution;
�!!m ¼ �		m ¼ �’’m ¼ 0 for both modes.

Mode 1 Mode 2

�DD11 ¼ 24:4 ð22Þ �DD21 ¼ 207 ð20Þ
�DD12 ¼ 102 ð9Þ �DD22 ¼ �DD21
�DD13 ¼ 181 ð15Þ �DD23 ¼ 62:2 ð34Þ
c1 ¼ 0:94 ð8Þ c2 ¼ 0

1 ¼ 0:54 ð5Þ
Rp ¼ 6:26% Rwp ¼ 10:49%

Table 5
The refined principal diameters (Å), relative dispersions, weight
parameter and reliability factors for the simplest ‘physical’ model using
bimodal elliptical cylinder crystallite shape and lognormal size distribu-
tion; �!!m ¼ �		m ¼ �’’m ¼ 0 for both modes.

Mode 1 Mode 2

�DD11 ¼ 29:0 ð25Þ �DD21 ¼ 161 ð16Þ
�DD12 ¼ 120 ð10Þ �DD22 ¼ �DD21
�DD13 ¼ 165 ð13Þ �DD23 ¼ 53:5 ð24Þ
c1 ¼ 0:76ð6Þ c2 ¼ 0

1 ¼ 0:44 ð6Þ
Rp ¼ 5:59% Rwp ¼ 11:16%

Figure 6
Equatorial (a) and vertical (b) cross sections through the apparent
crystallites. Blue contours: ellipsoidal model; red contours: spherical
harmonics model.
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pattern fitting using the phenomenological model with sphe-

rical harmonics. The fit is imperfect and some details are

smoothed, mostly for the area-averaged apparent crystallite.

This should be expected if we take into account the idealized

and simplified character of the crystallite shape models.

Nevertheless, this is an approximate representation of the zinc

oxide microstructure. It is notable that the refined parameters

in Tables 4 and 5 have comparable values, the relative differ-

ences being around 20%. Consequently, we can imagine that

both the ellipsoids and the elliptical cylinders approximate

two types of strongly anisotropic crystallites that are present in

the sample with approximately equal weights. The first mode

represents thin plates parallel to the b
c plane and having

a broad lognormal size distribution. These crystallites are

responsible for the super-Lorentzian peak shapes in the

diffraction pattern. The second mode represents short rods

with axes along c, having a very sharp size distribution. The

existence of this mode explains the concave segments on the

vertical cross section contours of the apparent crystallites. In

analogy to the sample of zinc oxide reported by Louër et al.

(1983), the plates and rods in the present sample could, in fact,

be prisms whose cross sections normal to the c axis are irre-

gular and regular hexagons, respectively. Unfortunately, for

the present sample, TEM data confirming these crystallite

morphologies and size distributions are not available owing to

the difficulty of dispersing the crystallites agglomerated in

pseudomorphic particles obtained from topotactic decom-

position reactions.

4.5. A priori information and the stability of the solution

To find the solutions reported in the previous section we

used the a priori information that one principal axis of the

ellipsoids or elliptical cylinders approximating the crystallite

shapes is parallel to the sixfold axis. Let us see what happens if

we ignore this information and include the Euler angles in the

list of the fitting parameters. For the ellipsoidal shape we

performed several minimizations changing the starting values

of the Euler angles. For simplicity these angles were

constrained to be the same for both modes. The starting values

for the remaining parameters were those from Table 4. When

the initial values of the Euler angles are small, their refined

values remain small but with high standard uncertainties, and

thus are not significant. All other refined parameters and R

factors remain practically unchanged. The solution from

Table 4 is reproduced except for larger values of standard

uncertainties. By contrast, if the minimization begins with high

values of the Euler angles, only one of them becomes not

significant, �!!m or �’’m, and the rest of the parameters become

significantly different from those in Table 4. The result of the

fit with �!!m fixed to zero and �		m and �’’m free is given in Table 6.

At first sight, if we take into account only the reliability

factors, this fit is slightly better than those from Table 4, but in

fact it represents a false solution. Indeed, if we calculate the

maximum anisotropy as the ratio between the greatest and the

smallest crystallite average diameters, for the data in Table 4

this quantity is 7.4 (9) for mode 1 and 3.3 (4) for mode 2, but

for the data in Table 6 these numbers are 15 (5) and 12 (3),

respectively. The last two numbers are excessively large with

large standard uncertainties. We can say that the solution from

Table 6 is not smoothed8 relative to those from Table 4. As can
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Table 6
The refined Euler angles �		m and �’’m, principal diameters (Å), relative
dispersions, weight parameter and reliability factors for the ‘physical’
model using bimodal ellipsoidal crystallite shape and lognormal size
distribution; �!!m ¼ 0 for both modes.

Mode 1 Mode 2

�		1 ¼ 18:5 ð8Þ �		2 ¼ �		1
�’’1 ¼ 10:0 ð2Þ �’’2 ¼ �’’1
�DD11 ¼ 53 ð6Þ �DD21 ¼ 509 ð133Þ
�DD12 ¼ 804 ð240Þ �DD22 ¼ �DD21

�DD13 ¼ 497 ð50Þ �DD23 ¼ 41:4 ð36Þ
c1 ¼ 0:33 ð6Þ c2 ¼ 0


1 ¼ 0:35 ð8Þ
Rp ¼ 6:19% Rwp ¼ 10:15%

Figure 7
Equatorial (a) and vertical (b) cross sections through the apparent
crystallites. Green contours: elliptical cylinders model; red contours:
spherical harmonics model.

8 The terms ‘smoothed solution’ and ‘stabilized solution’ are frequently met in
the literature when ill-posed inverse problems like deconvolution are
discussed.
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be seen in Fig. 8, the non-smoothed character is also reflected

in the volume-averaged apparent crystallite reconstructed

with this solution. This is manifested in both the equatorial

and the vertical cross sections as ripples in the vicinity of the

equatorial plane. A similar but different solution can be

obtained if �’’m is fixed to zero and �!!m and �		m are refined. We

can conclude that if the a priori information is ignored the

solution becomes unstable, obtaining very probably an incor-

rect description of the morphologies and the distribution of

the crystallites. At least for this sample, the pattern does not

contain enough information to refine univocally the crystallite

orientations together with other anisotropic size distribution

parameters. Would such refinement be possible if the distri-

bution had only one mode, that is, a smaller number of

parameters? This question is still open.

5. Conclusions

A new improved spherical harmonics model to describe the

size anisotropy in whole powder pattern fitting was achieved

by combining the previously published model (Popa, 1998)

with the peak profile for spherical crystallites and a lognormal

size distribution. Like the old model, the improved model is

phenomenological and is appropriate for implementation in

existing Rietveld codes. The new method is able to fit difficult

patterns where conventional profiles fail and to estimate both

volume- and area-averaged apparent crystallites.

In principle, the apparent crystallites determined in this way

(or by conventional methods if available) can be further used

in a least-squares refinement program to fit the parameters of

a physical model: the shape, orientation and size distributions

of crystallites. The diffraction pattern may not have enough

information to sustain too complex a model; in order to

achieve stable solutions, it is then advisable to use simple

models and to take advantage of some a priori information,

which would decrease the number of fitting parameters. On

the other hand, we must be aware that, because the models of

crystallite morphology and distribution have an idealized

character, one expects only an approximate quantitative

reproduction of the apparent crystallites. Moreover, even if a

stable solution is achieved in the context of a given model, it

does not mean that this solution is unique, as several models

may fit the data equally well. To confirm or reject a possible

model, additional information, such as that obtained by TEM,

is necessary. This is valid not only for the size-broadening

effect but also for the strain-broadening effect. We think that,

in principle, the diffraction alone can unambiguously deter-

mine with a good accuracy only an apparent microstructure.

APPENDIX A
Analytical approximation of ��� for lognormal
distribution of spherical crystallites

[From Popa & Balzar (2002).] The exact expression of ���ðx; cÞ
for the lognormal distribution is

���ðx; cÞ ¼��1=2
R1

�1
dt expð�t2Þ��x ð1þ cÞ7=2

� exp t 2 lnð1þ cÞ½ �1=2� ��
: ð29Þ

Here �ðxÞ is the interference function for a sphere:

�ðxÞ ¼ ðx2 þ sin2 x� x sin 2xÞ=x4:

The integral in equation (29) can be performed by a Gauss–

Hermite quadrature requiring a large number of nodes to

reach a given accuracy. For implementation in existing whole

pattern fitting codes (Rietveld included) an appropriate

analytical approximation is available:

���ðx; cÞ ’

ð8=3Þð1þ cÞ�3

	
�1�

�1
1 ð1þ 4x2=�21Þ�1 þ �2��1

2 ð1þ 4x2=�22Þ�1

þ �3��1
3

expð�4x2=��23Þ if 0 � c � 1

ð1þ 4x2=�23Þ�1 if 1<c � 6


�
: ð30Þ
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Figure 8
Equatorial (a) and vertical (b) cross sections through the apparent
crystallites. Red: spherical harmonics model; blue: ellipsoidal model with
Euler angles fixed according to the a priori information; green: ellipsoidal
model with Euler angles �		m and �’’m refined.
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In (30) the parameters �1, �1, �2 and �2 are independent

empirical functions of c, but �3 and �3 are constrained to have
���ð0; cÞ ¼ 1. These are the following (always 0 � �i � 1):

�1ðcÞ ¼ 0:25631 þ 0:018638 cþ 0:001155 c2

þ 3:5671 c expð�2:0467 c0:93346Þ;

�1ðcÞ ¼ 4:02326 expð�44:6429 cÞ þ 3:13982 expð�7:01128 cÞ
þ 0:580742 expð�0:413958 cÞ þ 0:381245 expð�1:10827 cÞ;

�2ðcÞ¼
0 if 0 � c � 0:4
0:59951 � 0:020058 ðc� 0:4Þ
� 0:45347=½1þ 3:3933 ðc� 0:4Þ2�
� 0:14604 exp½�0:49272 ðc� 0:4Þ2� if 0:4 � c � 6;

8>><
>>:

�2ðcÞ ¼ 0:32781 =
�
1þ 1:5399 ðc� 0:4Þ � 0:21223 ðc� 0:4Þ2

þ 0:18158 ðc� 0:4Þ3�;
�3 ¼ 1� �1 � �2; �3 ¼ �3 =

�
3ð1þ cÞ3=8� �1=�1 � �2=�2

�
:

We are immensely indebted to Daniel Louër and Nathalie

Audebrand from Université de Rennes, France, for synthe-

sizing the sample and collecting the data under discussion in

this paper, as well as for very helpful discussions.
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Cryst. 26, 22–33.
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Cryst. 34, 298–310.
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