

DEPARTMENT OF MECHANICAL & MATERIALS ENGINEERING

NAE GRAND CHALLENGES FOR ENGINEERING NAE Grand Challenge: Develop Carbon Sequestration Methods

Fall Quarter 2018

Dr. Jason Roney

jason.roney@du.edu

14 Grand Challenges for Engineering in the 21st Century DEPARTMENT OF MECHANICAL & MATERIALS ENGINEERING

Carbon Sequestration Challenges:

Definition: Carbon sequestration is capturing the carbon dioxide produced by burning fossil fuels and storing it safely away from the atmosphere— CO_2 is responsible for Greenhouse Warming

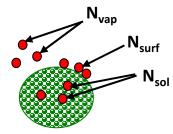
- how best to capture gaseous CO₂ from the atmosphere based on Chemistry and Physics
- 2. How best to capture CO₂ at the source (stack emissions)
- 3. what are the best methods for long-term storage
- 4. How does one scale these methods to deal with potentially capturing and storing 1 trillion tons of CO₂

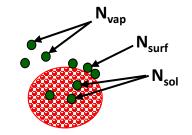
All of these have engineering components; some are purely technical and others are systems challenges.

My Related Projects/Research Areas

Atmospheric Capture of CO₂;

The current atmosphere has an estimated 400 ppm (0.04%) of CO₂. These levels must be reduced by selectively reducing CO₂. By engineering adsorption techniques it may be possible to "strip" the atmosphere of CO₂. The technique could involved injecting "cleaning" particles into the atmosphere or cycling the atmosphere through capture devices with cleaning particles.





Atmospheric Capture of CO₂:

Developing Models and Techniques for Capturing Atmospheric CO₂

Models: Adsorption/Absorption (Gas molecules to Particles/Droplets)

N_{vap} = # gas molecules in vapor phase N_{surf} = # gas molecules at surface of particle N_{sol} = # gas molecules in solution

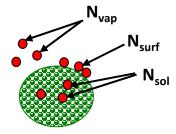
Gas CO₂/Particle Cleaner

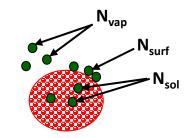
Particle Cleaner/Gas CO₂

Model Techniques: Atmospheric-Sized CO₂ Scrubber

My Related Projects/Research Areas CO2 Local Capture?

The best way to capture future CO_2 is to not let the gases into the atmosphere at all. Rather, a series of devices could be used to capture CO_2 at power plants, in tail-pipe emissions, factories, etc. This captured CO_2 could be more readily be used in products where it would be stored out of the atmosphere.





Capturing CO₂ at the Source

Developing Models and Techniques for Capturing Source CO₂

Models: Adsorption/Absorption (Gas molecules to Particles/Droplets)

Gas CO₂/Particle Cleaner

Particle Cleaner/Gas CO₂

Model Techniques: Source CO₂ Capture

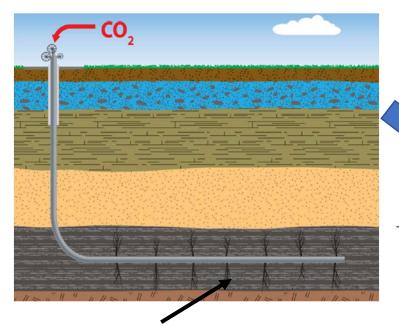
First designs are beginning to enter the market, but technology is likely to rapidly change with more research and capture becoming more efficient as methods improve. Do the models agree with implementation, why or why not?

N_{vap} = # gas molecules in vapor phase N_{surf} = # gas molecules at surface of particle N_{sol} = # gas molecules in solution

Same ideas, but may have cleaning surfaces/or particles since emissions would be concentrated

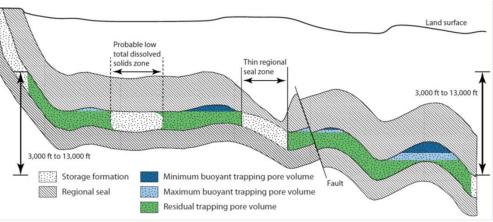
My Related Projects/Research Areas

CO₂ Storage


To keep CO_2 that is captured from coming back into the Earth's atmosphere, there needs to be long-term storage techniques. Some of the methods proposed include pumping into shale and other sedimentary rock that is far below the surface. Also thoughts have been given to pumping into the greatest depths of the ocean. The challenge is knowing how often or likely the CO_2 may desorp (coming out of the rocks or the ocean).

DEPARTMENT OF MECHANICAL & MATERIALS ENGINEERING

Long term Storage of CO₂: Modeling



Model the Adsorption/Desorption Bed (Shale) with "Simple" Model

Quantify how effective long term storage might be in different types of sedimentary rock formations in the Earth's surface.

Apply Eventually to More Realistic Formations

